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Abstract 

We present new decomposition algorithms for training multi-class support vector 
machines (SVMs), in particular the variants proposed by Lee, Lin, & Wahba (LLW) and 
Weston & Watkins (WW). Although these two types of machines have desirable theoretical 
properties, they have been rarely used in practice because efcient train- ing algorithms have 
been missing. Training is accelerated by considering hypotheses without bias, by second order 
working set selection, and by using working sets of size two instead of applying sequential 
minimal optimization (SMO). We derive a new bound for the generalization performance of 
multi-class SVMs. The bound de- pends on the sum of target margin violations, which 
corresponds to the loss function employed in the WW machine. The improved training 
scheme allows us to perform a thorough empirical comparison of the Crammer & Singer 
(CS), the WW, and the LLW machine. In our experiments, all machines gave better 
generalization results than the baseline one-vs-all approach. The two-variable decomposition 
algorithm outperformed SMO. The LLW SVM performed best in terms of accuracy, at the cost 
of slower training. The WW SVM led to better generalizing hypotheses compared to the CS 
machine and did not require longer training times. Thus, we see no reason to prefer the CS 
variant over the WW SVM. 
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1 Introduction 

Long training times limit the applicability of multi-class support vector machines (SVMs). In 
particular, the canonical extension of binary SVMs to multiple classes (referred to as WW, [32, 
6, 31]) as well as the SVM proposed by Lee, Lin, & Wahba (LLW, [19]) are rarely used. These 
approaches are theoretically sound and experiments indicate that they lead to well-generalizing 
hypotheses, but efcient training algorithms are not avail- able. Crammer & Singer (CS, [7]) 
proposed the arguably most popular modification of the WW formulation, mainly to speed-up 
the training process. Still, the one-vs-all method [31, 24] is most frequently used when SVMs are 
applied to multi-class problems. 

Against this background, we consider batch training of multi-class SVMs with uni- versal 
(i.e., non-linear) kernels and ask the questions: Can we increase the learning speed of multi-class 
SVMs by using a more efcient quadratic programming method? Do the convincing statistical 
properties of the LLW machine lead to better hypotheses in prac- tice? Can we support our 
experience about the performance of these machines by an instructive generalization bound? 
This study gives positive answers to these questions. We provide efcient training algorithms for 
all machines. These make training of LLW machines practical and allow to train WW SVMs as 
fast as CS's variant. Extensive experiments demonstrate the superior performance of the LLW 
machine in terms of gen- eralization performance. We derive a new generalization bound for 
multi-class SVMs that suggests that the loss function considered in the WW machine is a natural 
choice. 

In the following, we first introduce multi-class SVMs and the corresponding opti- mization 
problems with an emphasis on the LLW machine. We then show how to solve these problems 
efciently with decomposition algorithms. Then we prove our new gener- alization bound for multi-
class SVMs. An extensive empirical comparison of the diferent training algorithms and SVM 
formulations closes this study. 

2 Multi-Class SVMs 

All multi-class SVMs considered in this study solve d-class classification problems by 
constructing decision functions of the form 

x → arg max wc,  
φ(x) + bc (1) 

c∈{1,...,d} 

given i.i.d. training data (x1, y1), . . . , (x , y ) ∈ X �  {1, . . . , d} . Here, φ : X → Η, φ(x) = k(x, � ), is a 
feature map into a reproducing kernel Hilbert space Η with 
corresponding kernel k, and w1, . . . , wd ∈ Η are class-wise weight vectors. The CS 
machine is usually only defined for hypotheses without bias term, that is, for bc = 0 (see 
[14] for a formulation with bias parameters). 

Two basic strategies to extend SVMs to multi-category classification can be distin- guished. 
One approach is to combine separately trained binary SVM classifiers after training as done in 
the prominent one-versus-all method (OVA). In the second family of algorithms, a single 
optimization problem considering all classes is derived and solved 
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at once. These all-in-one methods are usually computationally more demanding [14]. 
Still, there are several reasons to prefer all-in-one SVMs. First, from our perspective the all-in-
one approach is theoretically more sound, and the machines have better statistical properties (see 
below). Second, although no significant diferences in classification ac- curacy between the two 
paradigms have been observed in some studies (perhaps due to insufcient model selection 
because of slow learning algorithms), in other studies (e.g., [8]) and our own experience all-in-one 
approaches perform significantly better than OVA. Third, it has been argued that approaches such 
as OVA are prohibitive and all-in-one 
methods are required for the general problem of learning structured responses [4, 29]. 

One-vs-all (OVA). In the popular OVA approach, d standard binary SVMs are built. The 
machine that learns the weight vector wc is trained to separate the training patterns 
belonging to class c from all other training patterns. Even if all binary classifiers are 
consistent, the resulting OVA classifier in general is not.1 

Weston & Watkins (WW) SVM. In contrast, all-in-one methods directly ob- tain all weight 
vectors wc from a single optimization problem taking all class rela- 
tions into account at once. The most prominent example is the WW multi-class SVM 
proposed in [32]. If we consider hypotheses without bias, this SVM is trained by solv- 
ing the primal problem minwc 1   d=1 wc, wc + C n=1 d=1 ξn,c subject to the con- 

2 c c
straints ∀n ∈ {1, . . . , }, ∀c ∈ {1, . . . , d} ∴ {yn} : wy

n
 − wc, φ(xn) ≥ 2 − ξn,c and 

∀n ∈ {1, . . . , }, ∀c ∈ {1, . . . , d} : ξn,c ≥ 0. If the first set of inequality constraints is 
replaced by wy

n
 − wc, φ(xn) ≥ 1 − ξn,c, this formulation equals the one suggested by 

Vapnik [31], which is equivalent after rescaling wc and C. Bredensteiner & Bennett's 
multi-category SVM also coincides with the WW formulation [6]. This approach can 
be regarded as the canonical extension of binary SVMs to multiple classes, because the objective 
function is basically the sum of the objective functions of the binary SVMs. The method is more 
sophisticated than OVA, because the constraints are adapted to 
the decision scheme (1). The �  d slack variables ξn,c correspond to the hinge loss when 
separating example xn from the decision boundary between classes yn and c. 

Crammer & Singer (CS) SVM. Crammer & Singer [7] proposed an alternative multi-class 
SVM. They also take all class relations into account at once and solve a single optimization 
problem, however, with fewer slack variables. The main reason for this modification of the WW 
primal problem was to speed-up the training, because the WW approach turned out to be too 
slow for many applications. The CS classifier is 
trained by solving the primal problem minwc 1   d=1 wc, wc + C n=1 ξn subject to 

2 c

1As a minimal counterexample, consider a single-point input space X = {x0} and three classes. Let 
the input belong to the three classes with probabilities 0.4, 0.3, and 0.3, respectively. In the limit of large 
datasets, each class is less frequently sampled than it is not sampled. Then, according to Steinwart's 
analysis [26] we obtain wc, φ(x0) + bc = −1 (with wc = 0 and bc = −1) uniformly for all classes 
c ∈ {1, . . . , d}. Thus, the probability of error is 2/3, which is worse than the Bayes risk of 0.6. 
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∀n ∈ {1, . . . , }, ∀c ∈ {1, . . . , d} ∴ {yn} : wy
n
 − wc, φ(xn) ≥ 1 − ξn and ∀n ∈ {1, . . . , } : 

ξn ≥ 0. 
For learning structured data, CS's method is usually the SVM algorithm of choice. 

Lee, Lin, & Wahba (LLW) SVM. Lee, Lin, & Wahba modified the standard multi-class SVM 
formulation for theoretical reasons. In contrast to the other machines, their SVM relies on a 
classification calibrated loss function, which implies Fisher con- sistency [28, 20]. Further, it was 
shown in [3] that, roughly speaking, for any surrogate loss function Φ used by a learning machine, no 
bound on the 0-1 loss excess risk (i.e., risk relative to the Bayes optimal value) in terms of the Φ excess 
risk is possible if Φ is not classification calibrated. However, up to now no efcient solver for the 
LLW SVM has been derived and implemented and thus empirical comparisons with other 
methods are rare. 

The primal problem of the LLW SMV can be stated as 

min 
wc 

1
2

d

c=1 
wc , wc + C 

d

n=1 c=1 
ξn,c 

1
s.t. ∀ n ∈ {1, . . . , }, c ∈ {1, . . . , d} ∴ {yn} : wc, φ(xn) + bc ≤ − d − 1 + ξn,c 

∀ n ∈ {1, . . . , }, c ∈ {1, . . . , d} : ξn,c ≥ 0 
d

∀h ∈ Η : 

( wc, h + bc) = 0 . (2) 
c=1 

If the feature map is injective then the sum-to-zero constraint (2) can be expressed as 
d
c=1 wc = 0 and 

d
c=1 bc = 0. The corresponding dual problem reads 

max 1�  
d

αn,c − 1 
d

α d − 1 n=1 c=1 2 n,m=1 c,e=1(δc,e − 1/d)αn,cαm,ek(xn, xm) 

s.t. ∀ n ∈ {1, . . . , }, c ∈ {1, . . . , d} ∴ {yn} : 0 ≤ αn,c ≤ C 
∀ n ∈ {1, . . . , } : αn,yn

 = 0 

∀ c ∈ {1, . . . , d} : αn,c 
= D . (3) 

n=1 

The last constraint (3) ensures that all d sums The 
value of D itself does not matter. 

n=1 αn,c take the same value D ∈ R. 

3 Dropping the Bias Parameters 

The constraint (3) makes the quadratic program above difcult to solve for decomposi- tion 
techniques ([5], see next section), because a feasible step requires the modification 

4



of at least d variables simultaneously. This problem concerns both the WW and the 
LLW approach. However, such a constraint is not present in the standard CS machine, 
because Crammer & Singer dropped the bias terms bc, which are of minor importance 
when working with characteristic or universal kernels [23]. 

Instead of restricting this trick to the CS machine, we propose to apply it also to the WW and 
LLW SVMs. If we do so, the constraint (3) simply vanishes from the dual, while everything else 
remains the same. 

This step of removing the bias terms is crucial, because it allows us for the first time to solve 
the WW and the LLW machine with elaborated decomposition techniques as discussed in the 
next section. 

Dropping the bias terms in all machines is also a prerequisite for a fair empirical comparison 
of the approaches. First, it makes fast training and therefore appropriate model selection and 
evaluation on several benchmark problems feasible. Second, now all machines consider the same 
hypothesis space. Instead we could have introduced the bias term into the CS method, but then 
the resulting dual problem gets much more complicated, because we end up with two sets of 
interfering equality constraints, see also [14], which renders the solution technique presented in 
the next section intractable. 

4 Solvers and Working Set Selection 

In this section we present our specialized solvers for the quadratic programs arising from training 
of non-linear multi-class SVMs. Fast solvers are needed to make SVM training with large 
datasets and/or large collections of problems tractable. In addition, faster training of single 
machines allows for more thorough model selection as discussed in section 6.1. 

First, we introduce standard decomposition techniques and the SMO algorithm as a basis for 
the much less common technique of sequential two-dimensional optimization (S2DO). This 
technique results in a considerable speed-up over conventional SMO for problems without 
equality constraints such as WW and LLW SVMs. 

For deriving our training algorithms, we consider quadratic programs of the canonical 
form 

max f (α) = vTα − 1 αTQα (4) 
α 2

s.t. ∀n ∈ {1, . . . , m} : Ln ≤ αn ≤ Un 

for α ∈ Rm. Here v ∈ Rm is some vector, Q ∈ Rm� m is a (symmetric) positive 
definite matrix, and Ln ≤ Un are component-wise lower and upper bounds. The gradient 
g = f (α) of (4) has components gn = ∂∂fαα) = vn − m αiQin. The dual problems of (

n i=1 
the WW and LLW machines without bias can directly be written in this canonical form. 
The dual problem of the CS machine introduces a large number of additional equality constraints, 
which will be ignored for the moment and will be discussed in section 4.4. 

The most frequently used algorithms for solving quadratic programs of non-linear SVMs are 
decomposition methods [21, 22, 9, 11, 5]. These methods iteratively decompose 
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the quadratic program into subprograms, which are restricted to a subset  B (working 
set) of variables, and then solve these subprograms. A desirable property of state-of-the- art 
decomposition algorithms is that iterations are fast in the sense that for any fixed 
upper bound q ∈ N on the working set size each iteration requires only Ο(m) operations. 
A general decomposition scheme for (4) is given in Algorithm 1. 

Algorithm 1: Decomposition algorithm for problem (4). 
Input: feasible initial point α(0), accuracy ε ≥ 0 
compute the initial gradient g(0) ← f (α(0)) = v − Qα(0) 

t←1 
while stopping criterion not met do 

select working indices B(t) ⊂ {1, . . . , m} 
solve subproblem restricted to B(t) and update α(t) ← α(t−1) + µ 
update the gradient g(t) ← g(t−1) − Qµ (t) 

set t ← t + 1 

(t) 

For a vector α ∈ Rm and an index set I ⊂ {1, . . . , m} let αI = i∈I αiei denote the 
projection to the components indexed by I, where ei ∈ Rm is the unit vector in which the 
i-th component is 1. If we assume that all variables except those in B = {b1, . . . , b|B|} 
are fixed, the subproblem can be written as: 

max f (αB) = f (αF + αB) = (vB − QαF )T αB − 1 αBQαB + const (5) 
αB 2

s.t. ∀n ∈ B : Ln ≤ αn ≤ Un 

Here, the complement F = {1, . . . , m}∴B of B contains the indices of the fixed variables. 
The convergence properties of the decomposition method are determined by the heuristic for 

selecting the working indices. Given a feasible search point, the set of possible working indices 
that indicate a violation of the KKT optimality condition by the corresponding variable is called 
violating set [18]. We denote the set of violating 
indices in a search point α by 

Β(α) = n ∈ {1, . . . , m} αn > Ln ∧ gn < 0 or αn < Un ∧ gn > 0 .

If the working set has minimum size for generating feasible solutions, this approach is 
called sequential minimal optimization (SMO, [22]), which is the most frequently used technique 
for SVM training. The minimum working set size depends on the number of equality constraints. 
For problem (4) it is one. Next, we briefly discuss the trade-ofs influencing the choice of the 
number of elements in the working set. Then we describe working set selection heuristics for 
solving (4). 

4.1 Working Set Sizes for Decomposition Algorithms 
The size of the working set B influences the overall performance of the decomposition 
algorithm in a number of diferent ways. First, the complexity of solving subproblem (5) 
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analytically grows combinatorially with |B|. This limits the working set size to few 
variables unless we are willing to use a numerical solver as done in [16]. Second, the larger  |B|, 
the less well-founded is a heuristic for picking the actual working set from the Ο(m|B|) 
candidates, because we regard such a heuristic as acceptable only if its time complexity is Ο(m). 
At the same time large |B| allows to find working sets on which large progress can be made. 
Third, the gradient update takes Ο(m �  |B|) operations. That is, small working sets result in fast 
iterations making few progress, while larger working sets result in slower iterations making 
larger progress. For example, we may roughly trade two iterations with |B| = 1 for one iteration 
with |B| = 2. The latter can take into account correlations between the variables. However, in two 
subsequent iteration the second iteration can profit from the gradient update of the first one, and 
can therefore make a better decision for picking its active variable. 

Thus, working set sizes should be small in order to avoid unacceptable computation times for 
solving the subproblem. In addition, there is an inherent trade-of between many cheap iterations 
profiting from frequent gradient updates on the one side and fewer slow iterations, each with a 
larger choice of working sets, making larger progress per iteration on the other side. In our point 
of view, none of the above arguments enforces the working set size to be minimal (or 
irreducible) as in SMO. 

Instead of always using the minimum working set, we propose to use working sets of size 
two whenever possible. We refer to this strategy as sequential two-dimensional optimization 
(S2DO). Considering two variables is a good compromise between (a) the complexity of solving 
the subproblems analytically, (b) the availability of well-motivated heuristics for working set 
selection, and (c) the computational cost per decomposition iteration. 

4.2 Second Order Working Variable Selection for SMO 
We adopt the second order working set selection introduced by [9].2 Let us assume that 
the optimization problem is restricted to the single variable αb, b ∈ Β(α). The update 

direction is thus eb. If we ignore the box constraints, the optimal step size is given  2by 

the Newton step ˆ = gb / Qbb yielding a gain of f (α + ˆ �  eb) − f (α) = ˆ2 �  Q2
bb = 2gb

bb
 . 

µ µ µ Q

This definition of gain leads to the greedy heuristic b(t) = arg max (g(t−
1))2/Qnn n ∈ n

Β(α(t−1)) for choosing the working index, where we define g(t−
1) = ∂∂αf

n
 (α(t−1)). To n

obtain a feasible new search point, the Newton step must be clipped to the feasible 
region by computing µ = max Lb − αb, min{Ub − αb, ˆ} . The update of the variables µ
is simply given by α (t) = α(t−1) + µ e . b

In each iteration the algorithm needs the b(t)-th column of the large kernel-based 
matrix Q for the gradient update. In addition, the diagonal entries  Qnn needed for 

2Note that in the case of single-variable working sets first order and second order working set selection 
coincide for the important special case ∀1 ≤ i, j ≤ m : Qii = Qjj, e.g., for normalized kernels (k(x, x) = 1 
for all x ∈ X). The same holds for the SMO working set selection strategy for the CS machine described 
in section 4.4. 
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second order working set selection should be precomputed and stored. This requires 
Ο(m) time and memory. 

4.3 Second Order Working Pair Selection for S2DO 
We now derive second order working set selection for (4) using  |B| = 2. Our focus 
is on multi-class SVMs, but the selection scheme is also valid for binary SVMs with- out bias.  
We follow the common scheme proposed by [9]. This amounts to selecting the first index 
according to the maximum absolute value of the gradient component, 
i = arg maxk∈Β(α) |gk|, and the second component by maximization of the gain (which 
depends on the first variable). 

In appendix A, we derive the gain and the update of the variables when using S2DO in the 
absence of equality constraints. This is a generalization of [27]. Note that the procedures difer 
considerably from the ones proposed in [9, 11, 5]. 

4.4 Solving the Crammer & Singer Multi-class SVM Using SMO 
The dual problem of the CS machine has equality constraints. Still, the problem 
can be solved by decomposition algorithms using workings sets of size two. The trick is to ensure 
that in every iteration the two variables correspond to the same training pattern. By doing so, the  
solver naturally respects all equality constraints. This was also suggested in [4] for online 
learning using first-order working set selection. That is, the algorithm presented in section 4.2 is 
not applicable and SMO and S2DO coincide. 

5 Generalization Analysis 

In [30], the empirical risk of multi-class SVMs is upper bounded in terms of the mean of the 
slack variables. Based on this bound it is argued that the CS SVM has advantages compared to 
the WW formulation because it leads to lower values in the bounds. We think that this argument 
is not convincing for several reasons. First, one has to be careful when drawing conclusions based 
on upper bounds on performance in general. Second, the empirical error may only be a weak 
predictor of the generalization error (in particular for large values of C). Apart from these general 
arguments, the statement is not supported when looking at generalization bounds. These bounds 
are instructive, because they indicate why it may be beneficial to sum-up all margin violation in 
the multi-class SVM optimization problem. As an example, we extend a bound on the 
generalization error of binary SVMs by Shawe-Taylor and Cristianini [25] to the multi-class case 
in order to investigate the impact of the diferent loss functions on the generalization performance. 

Let hc(x) = wc, φ(x) . After dropping the bias term in the WW machine the 
conceptual diference between the WW and the CS approach is the loss function used 
to measure margin violations. For a given training example (xi, yi) the WW machine 
penalizes the sum c=yi [1 − hy

i
 (xi) + hc(xi)]+ of margin violations, while the CS 3

3For simplicity we use the target margin γ = 1 proposed in [31] for the analysis. This makes the 
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machine penalizes the maximum margin violation maxc=yi[1 − hy
i
(xi) + hc(xi)]+. Here 

we use the short notation [t]+ = max{0, t}. 
The basic idea of our analysis is the following: There are d−1 mistakes one can make 

per example xi, namely preferring class e over the true class yi (e ∈ {1, . . . , d} ∴ yi). Each 
of these possible mistakes corresponds to one binary problem (having a decision function 
with normal wy

i
 −we) indicating the specific mistake. One of these mistakes is sufcient 

for wrong classification and no "binary" mistake at all implies correct classification. A 
union bound over all mistakes gives the multi-class generalization result based on known bounds 
for binary classifiers. 

Let us first restate a fundamental result from [25] for binary classification problems with 
labels {� 1}. It bounds the risk under the 0-1 loss depending on the fat shattering dimension (e.g., 
see [17, 1]) of the class of real-valed decision functions. We measure 
the margin violation of training pattern (xi, yi) by zi = [γ − yih(xi)]+, collected in the 
vector z = (z1, . . . , z )T ∈ R . Then we have: 

Theorem 1 (Corollary 6.14 from [25]). Let Φ be a sturdy class of functions h : Φ → 
[a, b] ∈ R with fat shattering dimension fatΦ (γ). Fix a scaling of the output range η ∈ R. 
Consider a fixed but unknown probability distribution on the input space X. Then with 
probability 1 − δ over randomly drawn training sets T of size for all 0 < γ < b − a the 
risk of a function h ∈ Φ thresholded at zero is bounded by 

h =2 fatΦ (γ/16) + 64D2 log2 65 (1 + D)3 

˜ ˜

˜ 64 1.5(b − a) 

• log2(9e (1 + D)) + log2 
δη 

with D = 2( z 1 �  (b − a) + η)/γ, provided ˜
on misclassified training points. 

≥ 2/ h and there is no discrete probability 

Ignoring logarithmic terms we have h ∈ Ο (fat(γ/16) + z 1/γ2)/ . ˜
Now we use a union bound over the d(d − 1)/2 possible pairs of classes to transfer 

this result to the multi-class case. For a more elaborate treatment of fat shattering in the multi-
class case we refer to the literature [17, 13]. 

We decompose the training set into subsets Tc = {(xi, yi) ∈ T | yi = c}, c ∈ {1, . . . , d} 
according to the training labels and denote their sizes by c = |Tc|. The natural extension 
of the margin violations d to the loss functions used in the WW and CS machines is 
zi,c = [γ − hy

i
(xi) + hc(xi)]+ for c = yi. We collect these values in vectors z(c,e) ∈ R c+ e 

with entries zi,e and zi,c for i ∈ Tc and i ∈ Te, respectively, for each fixed pair (c, e) of 
diferent classes. We also define the vector z ∈ R � (d−1) collecting all margin violations. 

The risk of each binary classifier hc − he separating the problem restricted to the 

target margins of the two machines directly comparable. 
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classes c and e can be upper bounded by 

(c,e) 
h =

2
(c,e) fatΦ (γ/16) + 64D2 log2 65 ˜ (c,e)(1 + D )3 

˜

128[ (c,e)]1.5(b − a) 
• log2(9e (c,e)(1 + D)) + log2 ˜ δη 

with probability 1 − δ/2, where (c,e) = c + e. 
Now we estimate the probability that a pattern x belongs to either class c or e. This 

can be done by considering the observed class frequencies and applying the Hoefding 
bound. We get 

(c,e) 1
+√ 

log(d(d − 1)) − log δ 
2

with a probability of 1 − δ /2 with δ = 2δ/(d(d − 1)). That is, this bound holds 
simultaneously for all d(d − 1)/2 pairs of classes with a probability of 1 − δ/2. 

We again apply the union bound and get the risk bound for the multi-class case 

h ≤
1≤c<e≤d 

(c,e) 1
+√ 

log(d(d − 1)) − log δ 
2 • (c,e) 

h (6) 

with a probability of 1 − δ, where we measure the complexity of the class of Rd-valued 
functions f used for multi-class classification by the maximal fat shattering dimension 
of the real-valued diferences he − hc. Thus, ignoring logarithmic terms we have 

d(d − 1)fatΦ (γ/16) + z 1/γ2 
h ∈Ο 

˜
. (7) 

The bounds (6) and (7) indicate that regularized minimization of z 1 is a natural 
learning strategy. The primal problem of the WW machine can be written as 

min 1 
2

and the CS primal as 
c

wc  
2 +C �  

i c

zi,c = 1 
2 c

wc  
2 +C �  z 1

min 1 
2 c

wc  
2 +C �  

i

max zi,c . 
c

Thus, the WW machine implements the strategy of minimizing z 1 straightly, while 
the CS approach minimizes z 1 only indirectly. Given that the bounds are not tight 
and the general warning above, this observation should not be over-interpreted. 

6 Experiments and Results 

The goal of our experiments was to rank the diferent machines in terms of generalization 
performance and training speed. Further, we wanted to assess whether we can speed-up training 
of multi-class SVMs by applying the S2DO algorithm instead of SMO. 
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6.1 Experimental setup 

We trained all machines on a number of standard benchmark problems from the UCI 
repository [2]. We selected the SVM parameter C and the bandwidth parameter γ of the radial 
Gaussian kernel k(x, x ) = exp(−γ x − x 2) by nested grid search on logarithmic scale using 5-fold cross 
validation. We recorded the best parameter settings found (see Table 1) for the diferent machines 
and computed the error on the test sets. 

Table 1: Best hyperparameters found in the model selection procedure. The values of C and γ are 
given in logarithmic units [log 2]. 

WW LLW 
CS 
OVA 

γ C
γ
C
γ
C
γ
C

Abalone 0
-

3 0
-

6 0
-

3 0
-

9 Car -
2 5

-
2 5

-
2 5

-
2 

5Glass 1
-

4 -
3 1

-
3 2

-
3 2
Iris -9 9

-4 5
-6 6
-12 18 

OptDigits -5 1
-6 10 -6 
5 -5 

10 
Page Blocks -4 8

-7 16 -5 
11 -9 20 
Sat -1 

2
-1 
2



-1 
2
-1 
4

Segment -4 7
-4 15 -9 

12 -5 10 
SoyBean -
6 1

-
7 4

-
6 3

-
7 3
Vehicle -7 10 -7 
11 -7 10 -8 
12 

It is well known that the generalization performance of SVMs depends crucially on the choice 
of the kernel and the regularization parameter. Thus, reliable model selection is important, in 
particular in a comparison study. The combination of grid search and K- fold cross validation 
gives solid performance across a wide variety of problems. However, it is a costly procedure that 
amounts to training K SVMs for each grid point, which sums up to hundreds of calls to the 
quadratic program solver per problem. This high computational cost is the price we pay for 
reliability - and a good reason for employing fast solvers as those presented in the previous 
section. 

For the WW and LLW machines (with dual problems without equality constraints) we 
compared SMO and S2DO by measuring the number of decomposition iterations as well as 
training time. 

For a fair comparison of training times of diferent types of SVMs it is important to choose 
comparable stopping criteria for the quadratic programming. Unfortunately, this is hardly 
possible when the quadratic programs difer. However, as a minimal requirement we made sure 
that all stopping conditions coincide for the case of binary classification, where all machines 
reduce to the standard SVM without bias. We use the standard technique to stop the solvers as 
soon as the KKT conditions for optimality are satisfied up to an accuracy of = 10−3. To rule out that 
our results are just an artifact of this choice, we repeated all CS experiments with = 10−5 (without 
observing increased classification accuracy). 

All our solvers use the same highly efcient caching and shrinking techniques, which 
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have been specifically tailored to the structure of multi-class SVM dual problems. The 
kernel cache operates on the level of training examples, not single variables, while shrink- ing 
techniques work on both levels, that is, on single variables as well as on chunks of variables 
corresponding to training examples. All experiments were implemented using the Shark machine 
learning library [15]. 

All numbers reported in the results section are medians over 10 independent trials with 
diferent splits of the datasets into training and test sets. We applied the statistical testing 
procedure suggested in [10] with a significance level of p < 0.05 for all tests in this study. 

6.2 Results 

Table 2: Generalization performance of the diferent multi-class SVMs measured by accuracy on 
test sets. 

WW LLW 
CS 
OVA 

Abalone 0.2605 
0.2682 
0.2165 
0.2672 

Car 0.9807 
0.9846 
0.9807 
0.9807 

Glass 0.7231 
0.7231 
0.7077 
0.6923 

Iris 0.9556 
0.9556 
0.9556 
0.9333 

OptDigits 0.9761 
0.9789 
0.9750 
0.9761 

Page Blocks 0.9342 
0.9330 
0.9294 
0.9312 

Sat 0.9235 
0.9230 
0.9240 
0.9135 

Segment 0.9639 
0.9683 
0.9495 
0.9625 

SoyBean 0.9032 
0.9247 
0.9247 
0.9247 

Vehicle 0.8425 
0.8425 
0.8150 
0.8346 



The main results are summarized in Tables 2 and 3. In our experiments, S2DO was 
statistically significantly faster than SMO with respect to training time and number of iterations. 
The time taken by one S2DO iteration was roughly equivalent to two SMO 
iterations.4 

The LLW SVM was significantly the best machine in terms of accuracy. Albeit its training 
times were acceptable when using our decomposition algorithms—in particular when using 
S2DO—, it was the slowest. 

Training the CS machines was slower than training WW SVMs in seven of the bench- marks. 
For six of the datasets they needed more iterations. A statistical comparison did not support a 
significant diference between CS and WW SVMs in terms of training complexity. However, the 
accuracy of WW's algorithm was statistically significantly superior to the CS SVMs for both 
values of . 

4The Iris data set is an exception from this rule of thumb. With 105 training examples and three 
classes it is the smallest data set in our benchmark suite. The SMO algorithm performed several fast shrinking and 
unshrinking operations, the S2DO none because it solved the problem so quickly. Thus, each S2DO iteration 
considered the complete set of variables, most SMO iterations only subsets. Therefore, a single SMO iteration took less  
time on average. However, SMO needed much more iterations. 
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The computational complexity of the OVA approach scales linearly with the number 
of classes d while the all-in-one methods are in ω(d). Accordingly, OVA is considerably faster than the 
other algorithms, but yielded hypotheses with a statistically significantly worse accuracy. 

7 Discussion and Conclusions 

We presented a fast training algorithm for WW and LLW SVMs. By dropping the bias term—as 
done in the CS approach—we get rid of the equality constraints in the dual problems for both 
machines. This makes decomposition methods easily applicable. We proposed a second order 
working set selection algorithm using working sets of size two for these problems. Instead of 
choosing the smallest, irreducible working set size, we in general propose to use a working set 
size of two whenever possible. This allows for a still tractable analytic solution of the sub-
problem and in our experience corresponds to a significantly better trade-of between iteration 
complexity (as, e.g., determined by the working set selection heuristic and the gradient update) 
and progress. That is, we favor sequential two-dimensional optimization (S2DO) over the strict 
SMO heuristic. This is also supported by the findings in [27] for binary SVMs. The S2DO 
heuristic is not restricted to the SVMs considered in this study, but can be applied to any machine 
involving quadratic programs without equality constraints. 

In our experiments, the WW approach generated hypotheses with higher classifica- tion 
accuracy compared to the CS machine. Both approaches outperformed the one- versus-all 
method in this respect. Using S2DO, the original WW multi-class SVM now becomes at least as 
fast as the CS method trained with tailored, state-of-the-art second order working set selection. 
This indicates that the faster training times observed for the CS SVM compared to the WW 
formulation were not achieved by reducing the number of slack variables, but rather by dropping 
the bias term from the hypotheses (this is in accordance with the findings in [14], where training 
times increased drastically when adding bias parameters to the CS machine). 

We derived a new generalization bound for multi-class SVMs based on performance 
guarantees for binary machines. It builds on a bound in terms of the fat shattering dimension. 
However, the proof technique can be transferred to other types of bounds relying on diferent 
complexity measures. The bound suggests that minimizing the sum of target margin violations is a 
proper learning strategy. As opposed to the CS algorithm, the WW machine directly performs 
regularized minimization of this quantity. 

Given our empirical and theoretical results, we see no reason anymore for  a priori preferring 
the CS SVM to the original method. We hope that our work makes the WW method more popular 
among practitioners, because it ofers improved accuracy without additional costs in training time 
compared to CS. 

From a theoretical point of view, the decisive property of the LLW multi-class SVM is the 
classification calibration of its loss function [28]. Our efcient solver makes LLW training 
practical and thereby allowed for the first extensive empirical comparison of 
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LLW with alternative multi-class SVMs.5 The LLW method is the only classification 
calibrated machine in our comparison [28] and showed the best generalization perfor- mance. 
This improved accuracy required considerably more training time. However, if training time does 
not matter, the LLW machine is the multi-class SVM of choice. This experimental result 
corroborates the theoretical advantages of the LLW machine. 

In this study, we considered batch learning of multi-class SVMs. For binary classifi- cation, it  
has been shown that improved second-order working set selection derived for batch learning is 
even more advantageous when applied to online learning in LASVM [12]. Therefore, we are 
confident that the results in this study also carry over to the popular LaRank online multi-class 
SVM [4]. 
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A Analytic Solution of the S2DO Problem 

Sections A.1 and A.2 show how to compute the gain and the update of the variables in S2DO in 
the absence of equality constraints. Note that the procedures difer considerably from the ones 
proposed in [9, 11, 5]. 

A.1 Gain Computation 

Let the optimization problem be restricted to αB = (αa, αb)T. Let the update of the 
current point αB be µB = (µa, µb )T .6 We ask for the unconstrained optimum αB = ˆ
(αa, αb)T of (5) and the corresponding gain f (αB) − f (αB). We write the second 

ˆ̂  ˆ
order Taylor expansion of (5) around αB using µB = αB − αB as f (αB) = f (αB) + 

ˆ ˆ
ˆ

µT f (αB) − 1 µT QBµB, where the matrix QB ∈ R2� 2 is the restriction of Q to entries 
B ˆ 2B 

corresponding to the working set indices. At the optimal point the first order term 
vanishes and the gain is f (αB) − f (αB) = 1 µT QBµB. The gradient ˆB = gB − QBµB 

ˆ 2B g
6In the binary case with bias, µa must be equal to � µb due to the corresponding equality constraint 

[5]. Without equality constraint this restriction can be dropped. 
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at αB vanishes and a Newton step gives µB = QB−1gB. However, this computation ˆ
assumes that the matrix QB can be inverted. If this is indeed true (det(QB) > 0), 
combining our results directly gives the gain 

g2Qbb − 2gagbQab + g2Qaa . 
a b

2(QaaQbb − Q2 ) ab 

In the case of det(QB) = 0 the calculation of the gain is more complicated. For QB = 0 we have 
two cases. For gB = 0 we have a constant objective function and the gain is zero, and for  gB = 0, 
we face a linear function with infinite gain. The case that QB is a rank one matrix remains. Let 
qB be an eigenvector spanning the null-eigenspace. For gB

TqB = 0 the gain is infinite and only if 
gB and qB are orthog- 
onal the problem is reduced to a one dimensional quadratic equation. In this case the 
(non-unique) optimum can be computed as follows: Let wB be a nonzero vector orthog- 
onal to qB or in other words an eigenvector corresponding to the non-null eigenspace of 
QB. Then the point αB = αB + (wT gB)/(wT QBwB) is optimal and the correspond- 

ˆ B B

ing gain is ((wT gB)2)/(2wT QBwB). The vectors gB and wB are aligned in this case 
B B

(gB = λwB for some λ ∈ R), such that gB can directly take the role of wB, resulting in 
((g2 + g2)2)/(2(g2Qaa + 2gagbQab + g2Qbb)). 

a b a b
For normalized kernels we have Qaa = Qbb = 1 and so the case QB = 0 is impossible 

and det(QB) = 0 amounts to the two cases Qab ∈ {� 1}, resulting in qB = (−Qab, 1)T 

and wB = (1, Qab)T . For gT qB = gb − Qabga = 0 the gain is given by (g2 + Qabgb)2/8. 

A.2 

B

Parameter Update 

a

In the case of S2DO, the update of the α vector is non-trivial and difers considerably 
from the standard updates described in [9, 11, 5]. In the following, we present the solution of the 
quadratic subproblem in the case of working sets of size |B| = 2. This derivation 
was first provided by [27] for the special case of normalized kernels (i.e., Qii = 1 for all 
i ∈ {1, . . . , m}), and v = 1. Here, we outline the solution for the general case. 

Let B = {i, j}. We consider the subproblem 

max f (αB + µB) = gT µB − 1 µT QµB + const 
B 2B 

s.t. αB + µB ∈ Φ = [Li, Ui] �  [Lj, Uj] . 

Setting the partial derivatives w.r.t. µi and µj to zero gives gi = Qiiµi + Qijµj and 
gj = Qijµi + Qjjµj. 

In the sequel we will solve a number of one-dimensional sub-problems where one of 
the variables µi or µj is fixed to one of its bounds. W.l.o.g. assume that αi + µi = Li. 
Then the optimal solution is given by 

µj = min max gj − Qijµi , L − α j
Qjj 
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We distinguish three diferent cases according to the rank of QB: For QB = 0 the 
solution is found by following the gradient, i.e., µi = Ui − αi for gi > 0, µi = Li − αi for 
gi < 0, and µi = 0 for gi = 0; with analogous rules for µj . 

Now assume that QB has rank one. Then the objective function is linear on each line 
segment Sp = {p + λ �  (−Qij, Qii)T | λ ∈ R} ∩ Φ, p ∈ Φ, with derivative γ = ∂f /∂λ = 
Qiigj − Qijgi in parameter direction. For γ ≥ 0 the optimum is obtained on one of the 
line segments at the maximal parameter value. These points cover either one or two 
adjacent edges of the parameter rectangle [Li, Ui] �  [Lj, Uj], depending on the signs of 
Qii and Qij. We solve the one-dimensional sub-problem for each of the edges involved. 
The best solution obtained from the one-dimensional sub-problems is the optimum µB. 
The case γ < 0 is handled analogously with the opposite edge(s). 

If QB has full rank then we compute the unconstrained optimum 

µB = Q−1gB = det(1Q ) �  Qjjgi − Qijgj 
ˆ B B Qiigj − Qijgi .

If this solution is feasible we have µB = µB. Otherwise first assume that only one of the ˆ
variables ˆi and ˆj is outside the bounds; w.l.o.g. assume αi+ ˆi > Ui. Then by convexity 

µ µ
µ

we conclude that the optimum is found on the edge {Ui} �  [Lj, Uj], which amounts to 
a one-dimensional problem. In case that both variables violate the constraints, w.l.o.g. 
αi + ˆi < Li and αj + ˆj > Uj, the same convexity argument ensures that the optimum 

µ

µ
is located on one of the adjacent edges {Li} �  [Lj, Uj] and [Li, Ui] �  {Uj}. As above, the 
better solution of the two one-dimensional problems constitutes the optimum. 
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