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Abstract 

In [Darkner and Sporring, 2011] was presented a framework based on locally orderless images and 
Lebesgue integration resulting in a fast algorithm for registration using normalized mutual information as dissimilarity  
measure. This report extends the algorithm to arbitrary complex similarity measures and supplies the full derivatives of  
a range of common dissimilarity measures as well as their obvious extensions. 
Keywords: Similarity measure, registration, Lebesgue integration, density estimation, scale space, lo- cally orderless 
images. 

1 Introduction 
Similarity measures are the cornerstones of image registration. They define the distance between two images in a given 
mutual configuration. The most common measure is the sum of squared diferences, which is often the default choice, since 
it is fast and fairly intuitive. However, it is not the preferred choice for medical image registration, and many measures 
have been investigated in the literature, each often requiring their own special implementation. In this paper, we extend 
recent work on unifying methodologies [Hermosillo et al., 2002, Darkner and Sporring, 2011] for linear and nonlinear 
functions of the intensity histograms. We use Locally orderless images (LOI) [Koenderink and Van Doorn, 1999] with an 
extension to joint density distributions for a wide range of similarity measures as the unifying methodology, where 
Lebesgue integration allow us to treat derivatives in measurement, integration, and intensity space in a well-posed 
manner, as well as ofer a scale-space formulation of these spaces. We illustrate with p-loss, p-Huber-loss, p-Hinge-loss,  
p-truncated-loss, Normalized Mutual information, p-cross correlation and p-correlation ratio. 

2 Image registration 

Image registration is the process of transforming one image I˜ : Ω → Γ, where Ω ⊆ RN and Γ ⊆ R, w.r.t. 
a reference image R : Ω → Γ such that some functional Φ(I˜, R) is minimized. We consider difeomorphic 
transformation of N M parameters, φ : Ω �  RNM → Ω, in short I = I˜ ◦ φ. The general form of Φ is, 

Φ = Μ(I, R) + Σ(φ), (1) 

where Μ is a (dis)similarity measure between the images and Σ(φ) is a regularization term. We use Rie- mannian Elasticity 
[Pennec et al., 2005] as described in [Darkner et al., 2011]. 
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2.1 (Dis)similarity measures 
Many similarity measures are on the form of, 

Μ= F 
x, I(x), R(x) dx, (2) 

Ω

where we make the distinction between diferentials to be discussed later as the element wise diferentials and 
the hypervolume elements dx = dx1 ∧ �  �  �  ∧ dxN used here for integration. The equivalent Lebesgue integral 
reads, 

Μlinear = F 
(i, j)hI,R(i, j) di ∧ dj, (3) 

Γ2 

where h is the joint histogram or co-occurrence matrix of intensity values in I and J. Such functionals are 
all linear in h. Examples are, p ≥ 0: 

F
 p
 (i, j) = |i − j|p, (4) 

Fp-hinge(i, j) = 
(|i − j| − k)p 

0

|i − j|p 

if |i − j| > k, 
otherwise, 

if |i − j| < k, 

(5) 

Fp-Huber(i, j) = pkp−1(i − j) − (p − 1)kp otherwise, (6) 

|i − j |p if |i − j| < k, 
Fp-trunc(i, j) = (7) 

kp otherwise, 

Due to linearity, any gradient of Μlinear will be independent of F . 
Possibly more popular similarity measures are non-linear functions of the histogram. In general these can 

be written as 

Μnon-linear = F 
hI,R(i, j) di ∧ dj, (8) 

Γ2 

where F now denotes some non-linear functional. As will be shown later, typical non-linearity has little 
influence on computation time. These measures include Μlinear as well as mutual information (MI), 

ΜMI = ΗI + ΗR − ΗI,R, (9) 

where Η denotes the marginal and the joint entropy of the intensity distribution [Shannon, 1948], 

ΗI = − pI (i) 
log pI (i) di, (10) 

Γ

ΗR = − pR(j) 

log pR(j) dj, (11) 
Γ

ΗI,R = − 

pI,R(i, j) log pI,R(i, j) di ∧ dj, (12) 
Γ2 

such that 

ΦMI = −pI (i) log pI (i) − pR(j) log pR(j) + pI,R(i, j) log pI,R(i, j). (13) 

The distributions are obtained by normalizing the histograms to unity, 

p(i) ph
(
i



) , 

Γ
 h(j)dj 

h(i, j) 
Γ2 h(k, l) dk ∧ dl 

2

.

(14) 

(15) 



Finally, the last class of similarity measures, we consider, are, 

Μcombine = F (Μ1, Μ2, . . . , ΜT ), (16) 

where F : RT → R is a smooth function. This includes the functionals above, Fnon−linear = Μ1, normalized 
mutual information (NMI), and cross correlation (CC), 

ΜNMI = ΗIΗ+ ΗR , I,R (17) 

ΜCC = 

µi = 

σi = 

Γ2 

Γ2 

(i − µi)(j − µj) p di ∧ dj, I,R 
σi σj 

ipI,R di ∧ dj, 

(i − µi)2pI,R di ∧ dj, 
Γ2 

(18) 

(19) 

(20) 

and similarly for µj and σj. correlation ratio for image registration was proposed in [Roche et al., 1998] but really originates in analysis of 
variance and is based on the factorization of the variance into variance within 
the classes and the variance between the class averages. The factorization of the variance can be written as 
follows: 

Γ
(x − µ)2p(x) dx = 

=

j Γj 

(x − µj + µj − µ)2pj(x) dx 

(x − µj)2pj(x) dx + (µj − µ)2pj(x) dx + 2 

(21) 

(x − µj)(µj − µ)pj(x) dx 

=

j

j

Γj 

Γj 

(x − µj)2pj(x) dx + 

j

j

Γj 

Γj 

(µj − µ)2pj(x) dx, 

j Γj 

(22) 

(23) 

where we have used that 

(x − µj)(µj − µ)pj(x) dx = (µj − 
µ) (x − 
µj)pj(x) dx = 0, (24) 

as well as 

j Γj 

µ= 1 
Γ
1

Γ

j

xp(x) dx, 

Γj 

(25) 

Thus correlation ratio is defined as, 

µj = Γ j Γj 

xpj(x) dx. (26) 

1− 
j Γj (x − µj)2pj(x) dx 

=
j Γj (µj − µ)2pj(x) dx 

. (27) 

Γ
 (x − µ)2f (x) dx 

Γ
 (x − µ)2f (x) dx 

In the Lebesgue frame work, correlation ratio j is interpreted as a class rather than an intensity value. Thus 
the use of Parzen window must be performed carefully. Smoothing in j-direction i.e. across classes should, if 
applied, be done according to a natural ordering. correlation ratio becomes 

1− 
j Γj (i − µj)2hI,R(i, j) di 

=
j Γj (µj − µ) hI,R(i, j) di 2

Γ
(i − µ) hI,R(i, j) di ∧ dj 2 Γ (i − µ)2hI,R(i, j) di ∧ dj . (28) 

In the context of analysis of variance we believe that in fact the test quantity between the variance within 
the class over the total variance is mor intuitive. In implementation it makes little diference, on which 
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fraction we optimize but from interpretation point of view we maximize the significance of the separation by 
minimization of the test quantity. We therefor write: 

j Γj (x − µj)2pj(x) dx 
− µ)2f (x) dx , (29) 

j
Γ
(µj 

which follows an F-distribution, i.e. the fraction of 2 χ2-distributions assuming that pj(x) and f (x) are 
identical and normally distributed. in the Lebesgue framework this becomes 

j Γj (i − µj)2hI,R(i, j) di 
− µ)2hI,R(i, j) di . 

(30) 

j
Γ
(µj 

In addition we write 

µ= 1 
Γ
1

Γ
i hI,R(i, j) di ∧ dj, (31) 

µj = Γ j Γj 

i hI,R(i, j) di. (32) 

If we disregard the origin in the analysis of variance and view correlation ratio and our alternative measure 
as fraction of central moments we can generalize this to 

1− 
j Γj (|i − µj|)phI,R(i, j) di 

=
j Γj (|µj − µ|)phI,R(i, j) di 

(33) 

Γ
(|i − µ|) hI,R(i, j) di ∧ dj p

The proposed alternative generalizes to 

Γ
(|i − µ|)phI,R(i, j) di ∧ dj . 

j Γj (|i − µj|)phI,R(i, j) di 
(34) 

j
Γ
(|µj − µ|)phI,R(i, j) di . 

2.2 Histograms by locally orderless images (LOI) 
All the similarity measures above have been expressed in terms of their histograms, and we will show that this 
allows for a unifying and fast framework for all the above registration algorithms. Our algorithm is based on Locally 
Orderless Images (LOI) [Koenderink and Van Doorn, 1999], which is a conceptual model of images in terms of 3 
fundamental scales: the amount of smoothing along the spatial domain (image smoothing), along the intensity domain 
(histogram smoothing), and the size of the window for calculating local histograms (the 
partial volume). A local histogram of a possibly warped image is written as, 

hI (i, x, Φ, α, β, σ) = P (I(x, Φ, σ) − i, β) ∗ W (x, α), (35) 
I(x, Φ, σ) = I(x, Φ) ∗ K(x, σ), (36) 

where P is a Parzen window of intensity or tonal scale β ∈ R+ centered at intensity i ∈ Γ, W is an integration window of scale 
α ∈ R+ and located at x, K is a spatial measurement kernel of scale σ ∈ R+, 
and I is the transformed image by transformation parameters Φ, and �  ∗ �  is the convolution operator taken 
w.r.t. the variable x. The histogram hR is defined similarly independently of2Φ or equivalently with unit 
transformation. In [Koenderink and Van Doorn, 1999] is used P (i, β) = e−i2/(2β ), and K(x, σ) = W (x, σ) = 
e−xT x/(2σ2)/(2πσ2)N/2 calling this structure the Locally Orderless Image. The distributions are obtained by 
normalizing to unity, 

pI (i|x, Φ, α, β, σ) hI (i, x, Φ, α, β, σ) , 

Γ
 hI (j, x, Φ, α, β, σ)dj 

1

(37) 

pI (i|Φ, α, β, σ) = |Ω| pI (i|
x, Φ, α, β, σ) dx, (38) 



Ω
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assuming (conditional) independence and uniformity such that pI (i, x|Φ, α, β, σ) = pI (i|x, Φ, α, β, σ)/|Ω|. 
The density pR is defined in a similar manner. As [Hermosillo et al., 2002, Darkner and Sporring, 2011], we 
extend the concept to the joint distributions as follows, 

hI,R(i, j, x, Φ, α, β, σ) = (P (I(x, Φ, σ) − i, β)P (J(x, σ) − j, β)) ∗ W (x, α), (39) 
hI,R(i, j, Φ, x, α, β, σ) 

pI,R(i, j|x, Φ, α, β, σ) 
Γ2 

1
hI,R(k, l, x, α, β, σ) dk ∧ dl , (40) 

pI,R(i, j|Φ, α, β, σ) = |Ω| 

pI,R(i, j|Φ, x, α, β, σ) dx, (41) 
Ω

assuming (conditional) independence and uniformity such that pI,R(i, j, x|Φ, α, β, σ) = pI,R(i, j|x, Φ, α, β, σ)/|Ω|. 

3 First Order Structure 
In the following we introduce the similarity measures and the gradient of (1) w.r.t. the transformation  φ. We use the 
notation of diferentials, dg(x) = Dg(x) dx, where D is the partial derivative operator also known as the Jacobian. Note that 
the use of dx without being paired with an integration symbol denotes a vector or matrix of diferentials, and not the 
wedge product of its elements. Further, we will only write up non-zero 
terms that depend on dφ. The diferential of (1) is, 

dΦ = dΜ + dΣ, (42) 

where arguments have been omitted for brevity. Ignoring the regularization term we focus on the diferential of the 
similarity measures. In the following we will ignore dΣ. 

The diferential of combinations of measures is found to be, 

� dΜ1 
�

� dΜ2 �  
dΜcombine = DF (Μ1, Μ2, . . . , ΜT ) �  .. �  . 

� .�  �
�

dΜT 

(43) 

In terms of the computational complexity, the combination only causes a multiplication factor  T . For linear 
Lebesgue integrals (3), the diferential becomes independent of F and is found to be, 

dΜlinear = F (i,  
j)dhI,R di ∧ dj. (44) 

Γ2 

under the mild Leibnitz integration rule. For non-linear similarity measures (8) the diferential is found to 
be, 

dΜnon-linear = 

dhI,R(i, j)DF (hI,R(i, j)) di ∧ dj. (45) 
Γ2 

Using Leibniz integration rule, the diferentials of the histograms are, 

dhR(j, x) = 0 
dhI (i, x, Φ) = (dP (I(x, Φ, σ) − i, β) ∗ W (x, α)) , 

dhI,R(i, j, x) = dP (I(ψ, Φ, σ) − i, β) P (J(ψ, σ) − j, β) ∗ W (x − ψ, α). 

where irrelevant arguments have been omitted for brevity. 

(46) 
(47) 

(48) 

While the above reveals the gradient of linear similarity measures, the all non-linear measures needs to 
have their Jacobean derived individually. For the normalized mutual information we find that 



dΜNMI = (dΗI + dΗR)ΗI,R − (ΗI + ΗR)dΗI,R . (49) 
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The entropy, ΗR, is independent of φ, hence dΗR = 0. Further, 

dΗI = − dpI 
(log pI + 1) di, (50) 

Γ

dΗI,R = − 

dpI,R(log pI,R + 1) di ∧ dj. (51) 
Γ2 

For the estimated distributions we find that 

1

dpI (i, Φ) = |Ω| Ω
dpI (i|x, Φ) dx, (52) 

dpI (i|x, Φ) dhI (i, x, Φ) − hI (i, x, Φ) Γ dhI (j, x, Φ)dj , (53) 

1
Γ
 hI (j, x, Φ)dj 

Γ
 hI (j, x, Φ)dj 2

dpI,R(i, j) = |Ω| 

dpI,R(i, j|x) dx, (54) 
Ω

dhI,R(i, j, x) h (i, j, x)   Γ2  
 dhI,R(k, l, x) dk ∧ dl 

dpI,R(i, j|x) − I,R 
.(55) 

Γ2 hI,R(k, l, x) dk ∧ dl 2Γ2  

hI,R(k, l, x) dk ∧ dl 

For cross correlation we find that 

dµi = 

idpI,R di ∧ dj, (56) 
Γ2 

dσi = 21 σi 

dΜCC = − 

Γ2 

(i − µi)dµipI,R + (i − µi)2dpI,R di ∧ dj, 

dµi(j − µj) + dµj(i − µi) + dσiσj + dσjσi di ∧ dj. 

(57) 

(58) 
Γ2 (σjσi)2 

For correlation ratio we derive the derivatives in parts and the do assembly due to the complicated 
structure of the functional. From (33) and (34) we extend the 3 terms in  p − norm setting such that they 
become linear and diferentiable. In the Lebesgue framework we can rewrite (33) by setting 

1
(|i − µj|)phI,R(i, j) di = 

1
(|i − k h (k, j) dk|)ph (i, j) di 

j Γj Γj 

=

j Γj 

1

Γj 

(| 

Γj Γj I,R 

k

I,R (59) 

(60) 

Since hI,R is positive, we can write 

k

j Γj Γj Γj (i − Γ ) hI,R(k, j) dk|)phI,R(i, j) di. j

p

j

1
Γj Γj 

Γj 

−∞ 

k
((i − Γ ) hI,R(k, j)) − j

∞

k
Γj 

k
(( Γ − i) hI,R(k, j)) dk j

hI,R(i, j) di. (61) 

For µ this simplifies a little 

1
(|i − µ|)phI,R(i, j) di = 1 (|i − k h (k, j) dk|)ph (i, j) di = 

Γ Γ Γ Γ
Γ
Γ I,R I,R (62) 



1
(| (i − k ) hI,R(k, j)| dk)phI,R(i, j) di. (63) 

Further, since hI,R is positive, we can write 

k
Γ

Γ Γ Γ

∞

Γ

p

1
Γ Γ −∞ (i − k ) hI,R(k, j) dk − 

Γ
k
Γ

6

( k − i) hI,R(k, j) dk 
Γ

hI,R(i, j) di. (64) 



These are both easily diferentiable structures, which shows that the partial derivatives are well defined 
everywhere. For the weighted variance between groups the denominator of (29). We first rewrite  µ as, 

µ= 1 
Γ Γ

i hI,R(i, j) di ∧ dj = 1 
Γ j Γj 

i hI,R(i, j) di, (65) 

where j is the class label. We can now rewrite (29) as, 

1
(|µj − µ|)phI,R(i, j) di = 1 

1
ihI,R(i, j) di − 1 ihI,R(i, k) di|)phI,R(i, j) di 

Γ j Γ Γ j Γ
(| Γ 

j

Γj Γ k Γk 

(66) 

=1 (|( Γ − 1 ) 1 ihI,R(i, j) di − 1 ihI,R(i, k) di|)phI,R(i, k) di. 
Γ j Γ j Γ Γj Γ k=j 

Γk 
(67) 

These individual integrals can be decomposed as follows, 
∞ 0

ihI,R(i, k) di = 

ihI,R(i, k) di − 

ihI,R(i, k) di. (68) 
Γk 0 −
∞ 

Thus, we get the denominator of (29) to be, 
∞ 0

1
( Γ − 1 )( 1

ihI,R(i, k) di − ihI,R(i, k) di)− 

Γ j Γ

1

Γ k=j 

j

0

Γ

∞

0

ihI,R(i, k) di − 

0

−∞ 

−∞ 

ihI,R(i, k) di 

p

hI,R(i, k) di, (69) 

which is a linear structure in its internal, thus easy to derive the first order structure from. We are now 
able to write the first order structure of generalized correlation ratio (33) and the alternative (34). As we have 
decomposed the parts in the fractions (33) and (34), we start out by writing the derivatives of the three 
unique parts of the equation: 

dΜ1 = d 
j

1
Γj Γj 

k
Γj 

−∞ 

k
((i − Γ ) hI,R(k, j)) − j

∞

k
Γj 

k
(( Γ − i) hI,R(k, j)) dk j

p

hI,R(i, j) di 

=
j

1
Γj 

k

Γj 

(p 
k

Γj 

−∞ 

k
((i − Γ ) hI,R(k, j)) − j

∞

k
Γj 

k
(( Γ − i) hI,R(k, j)) dk j

p −1 

Γj 

∞k k
(

−∞ ((i − Γ ) dhI,R(k, j)) − j
k

Γj 

k
Γj (( Γ − i) dhI,R(k, j)) dk)hI,R(i, j)) di+ j

∞

p

j
1

Γj 
Γj −∞ 

k
((i − Γ ) hI,R(k, j)) − j

k
Γj 

k
(( Γ − i) hI,R(k, j)) dk j

dhI,R(i, j) di, (70) 

dΜ2 = d 1 
Γ Γ

k
Γ

−∞ 
(i − k ) hI,R(k, j) dk − 

Γ

∞

k
Γ

( k − i) hI,R(k, j) dk 
Γ

p

hI,R(i, j) di 

=1 
Γ Γ

p
k
Γ

−∞ 
(i − k ) hI,R(k, j) dk − 

Γ

∞

k
Γ

( k − i) hI,R(k, j) dk 
Γ

p −1 

k
Γ −∞ (i − k ) dhI,R(k, j) dk − 



Γ
k

∞

k  Γ
(

 k − i) dhI,R(k, j) dk hI,R(i, j)+ 
Γ

p
Γ

−∞ 
(i − k ) hI,R(k, j) dk − 

Γ

7

∞

k
Γ

( k − i) hI,R(k, j) dk 
Γ

dhI,R(i, j) di, (71) 



and 

dΜ3 = d 1 ( Γ − 1 )( 1
∞

ihI,R(i, k) di − 
0

ihI,R(i, k) di)− 
Γ

1

j Γ
∞

j Γ 0
0

−∞ 
p

ihI,R(i, k) di − ihI,R(i, k) di 
hI,R(i, k) di 

Γ k=j 0 −∞ 

∞ 0

=1 
Γ p ( Γ − 1 )( 1

ihI,R(i, k) di − ihI,R(i, k) di)− 

1
j Γ

∞
j Γ 0

0
−∞ 

p −1 

ihI,R(i, k) di − ihI,R(i, k) di 
Γ k=j 0 −∞ 

∞ 0

( Γ − 1 )( 1
ihI,R(i, k) di − ihI,R(i, k) di)− 

j Γ 0
−∞ 

∞ 0

1
ihI,R(i, k) di − ihI,R(i, k) di 

hI,R(i, k) di+ 
Γ k=j 0 −∞ 

1
( Γ − 1 )( 1

∞

ihI,R(i, k) di − 
0

ihI,R(i, k) di)− 
Γ j

1
Γ j

∞
Γ 0

0
−∞ 

p

ihI,R(i, k) di − 

ihI,R(i, k) di 

dhI,R(i, k) di. (72) 
Γ k=j 0

−∞ 

We denote: 

Μ1 = 
j Γj 

(|i − µj|)phI,R(i, j) di (73) 

Μ2 = 

Μ3 = 
j

Γ
(|i − µ|)phI,R(i, j) di ∧ dj 

(|µj − µ|)phI,R(i, j) di 
Γj 

(74) 

(75) 

From this we write (33) as 

dΜCR = − Μ1dΜ2Μ2dΜ1Μ2 −

2

(76) 

ordΜCR = Μ2dΜ3Μ2dΜ2Μ3 −

2

The first order structure of the alternative version 29 becomes 

(77) 

(78) 

dΜCRalt = − Μ3dΜ1Μ2dΜ3Μ1 −

3

(79) 

(80) 



4 Summary 
In the above we have discussed Image registration for various (dis)similarity measures. These have been formulated as 
Lebesgue integrals and histograms measured by locally orderless images. Further the first order structure has been 
evaluated for a wide range of (dis)similarity measures. The derivatives demonstrates the existence of the Jacobian of 
linear Lebesgue measures regardless of the smoothness of the corresponding loss function. 

8



References 
[Darkner et al., 2011] Darkner, S., Hansen, M. S., Larsen, R., and F., H. M. (2011). Efcient hyperelastic 

regularization for registration. In Proc. SCIA 2011 SPLNCS. 

[Darkner and Sporring, 2011] Darkner, S. and Sporring, J. (2011). Generalized partial volume: An inferior 
density estimator to parzen windows for normalized mutual information. In  Information Processing in Medical  
Imaging (IPMI 2011). To appear. 

[Hermosillo et al., 2002] Hermosillo, G., Chefd'Hotel, C., and Faugeras, O. (2002). Variational methods for 
multimodal image matching. International Journal of Computer Vision, 50(3):329-343. 

[Koenderink and Van Doorn, 1999] Koenderink, J. and Van Doorn, A. (1999). The structure of locally 
orderless images. International Journal of Computer Vision, 31(2):159-168. 

[Pennec et al., 2005] Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., and Ayache, N. (2005). Riemannian 
Elasticity: A Statistical Regularization Framework for Non-linear Registration. MICCAI, 3750:943. 

[Roche et al., 1998] Roche, A., Malandain, G., Pennec, X., and Ayache, N. (1998). The Correlation Ratio 
as a New Similarity Measure for Multimodal Image Registration. MICCAI, pages 1115-1124. 

[Shannon, 1948] Shannon, C. (1948). A mathematical theory of communication.  Bell System Technical 
Journal, 27:379-423, 623-656. 

9


