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Preface

These proceedings contain the contributions presented at the 4th DIKU-IST
Joint Workshop on Foundations of Software held at Tokyo, Japan, January 10-
14, 2011. The workshop featured talks and discussions on program optimization
and parallel programming, formal semantics and algorithms, reversible and bidi-
rectional computing, and demonstrations of software prototypes.

After the success of the first three joint workshops, which took place at
Dragør, Copenhagen (2005), Shonan Village, Japan (2006) and Roskilde, Den-
mark (2007) with proceedings as DIKU Technical Reports 05/07, 06/07 and
07/07, the 4th DIKU-IST workshop took again place in Japan. It aimed to
provide a forum for presenting the latest research and promoting the research
collaboration between the Department of Computer Science (DIKU), University
of Copenhagen, and the Graduate School of Information Science and Technology
(IST), University of Tokyo. In 2004, IST and the Faculty of Science at the Uni-
versity of Copenhagen entered an Academic and Student Exchange Agreement
during the State Visit of Queen Margrethe II to Japan. Today, both universities
are partners in the International Alliance of Research Universities (IARU).

Computer science provides one of the keys to the technologies of the 21st
century. Its applications have found their way into all areas of daily life, often
unnoticed by their users, and software has become a decisive factor for commer-
cial success in many areas of modern business and society. This series of work-
shops between DIKU and IST is devoted to the scientific foundations of software.
Theory and practice of programming languages are very important and visible
research fields at both research institutions in Copenhagen and Tokyo. The ob-
jective of these joint workshops is to give researchers and graduate students at
both institutions the opportunity to exchange the latest research ideas and to
jointly engage in outstanding international research.

The workshop had about 50 participants from Japan and Denmark. The
organizers would like to thank all speakers, participants, and the local organizers
for making this meeting both successful and enjoyable. Special thanks to Masami
Hagiya, Dean of IST, for supporting the workshop, Yasuo Kuniyoshi, Professor
of IST, for the visit to the robotics laboratory, and to Kaori Sato of the Office
of International Relations for organizing the student program.

Copenhagen and Tokyo, February 2011 Robert Glück
Fritz Henglein
Zhenjiang Hu

Masato Takeichi
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PROGRAMMING IN BIOMOLECULAR COMPUTATION

Lars Hartmann

Neil D. Jones

Jakob Grue Simonsen

+

Visualization by Søren Bjerregaard Vrist

(All now or recently at the University of Copenhagen)

DIKU-IST (January 2011)

Sources:

� June 2010 conference CS2BIO Computer Science to Biology

� Journal Scientific Annals of Computer Science (to appear)

� Festschrift for Carolyn Talcott (to appear)
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UNIVERSALITY AND PROGRAMMING IN A

BIOCHEMICAL SETTING

Turing completeness results for biomolecular computation:

� Cardelli, Chapman, Danos, Reif, Shapiro, Wolfram,. . .

� Net effect: any computable function can be computed, in

some sense, by various biological mechanisms.

� Not completely compelling from a programming perspective.

� Our aim: a computation model where

• “program” is clearly visible and natural, and

• Turing completeness is not artificial or accidental, but a

natural part of biomolecular computation

— 1 —

CONNECTIONS EXIST BETWEEN BIOLOGY AND

COMPUTATION, but . . .

WHERE ARE THE PROGRAMS?

Our proposal: a model of computation that is

� biologically plausible: semantics by chemical-like reaction

rules;

� programmable (a bit like low-level computer machine code);

� uniform: new “hardware” not needed to solve new problems;

� stored-program: programs = data;

programs are executable and compilable and interpretable

� universal: all computable functions can be computed

� Turing complete in a strong sense: ∃ a universal algorithm

(able to execute any program, asymptotically efficient)

— 2 —
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BUT WHERE ARE THE PROGRAMS?

In existing models of biomolecular computation

it’s hard to see anything like a program that realises or

directs a computational process.

� In cellular automata, “program” is expressed only in the ini-

tial cell configuration, or in the global transition function

� Many examples: given a problem, authors cleverly devise a

biomolecular system that can solve this particular problem

� The algorithm being implemented is hidden in the details of

the system’s construction, hard to see.

Our purpose is to fill this gap,

� to establish a biologically feasible framework in which

� programs are first-class citizens.

— 3 —

OTHER COMPUTATIONAL FRAMEWORKS

Circuits, BDDs, finite automata: Nonuniform, Turing incomplete

Turing machine:

� Pro Visible program; complete; universal machine exists

� Con Asymptotically slow: universal machine takes time

O(n2) to simulate a program running in time O(n)

Other program-based models: Post, Minsky, lisp, ram, rasp. . .

Complex, biologically implausible

Cellular automata: von Neumann, life, Wolfram,. . .

� Pro Can simulate a Turing machine

� Con Complex, biologically implausible (synchronisation!)

There is no natural universal cellular automaton.

It’s very hard to see “the program”.

— 4 —

“DIRECT” PROGRAM EXECUTION

Write [[program]] for the meaning or net effect of running program:

[[program]](datain) = dataout

� program is an active agent.

� It is activated (run) by applying the semantic function [[ ]].

� Some mechanism is needed to execute program, i.e., to apply

[[]] to program and datain :

hardware (“wetware”?).

— 5 —
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THE BIOLOGICAL WORLD IS NOT HARDWARE!

We must re-examine programming language assumptions.

Computers have programmer-friendly conveniences, e.g.,

� A large address space of randomly accessible data

� Pointers to data, perhaps at a great “distance” from the

current program or data

� address arithmetic, index registers,. . .

� Unbounded fan-in: many pointers to the same data item. . .

None of these is biologically plausible!

Workarounds are needed

if we want to do biological programming.

— 6 —

FOR BIOLOGICAL PLAUSIBILITY

� There is no action at a distance: all effects achieved via

chains of local interactions. Biological analog: signaling.

� There are no pointers to data (addresses, links, list point-

ers): To be acted on, a data value must be physically adja-

cent to an actuator. Biological analog: chemical bond

between program and data.

� No nonlocal control transfer, e.g., unbounded GOTOs or

remote procedure calls. Biological analog: a bond

from one part of a program to another.

� A “yes”: ∃ available resources to tap, i.e., energy to change

the program control point, or to add data bonds.

Biological analogs: ATP, oxygen, Brownian movement.

— 7 —

THE BLOB MODEL

Simplified view of a molecule and chemical interactions (Cardelli,

Danos, Lanève,. . . ).

Blobs are in a biological “soup” and are connected by symmet-

rical bonds linking their bond sites.

Picture of a blob: (Bond sites 0, 2 and 3 are bound, and 1 is

unbound)
0

1⊥ 2
3

�

�

�

�

A blob has 4 bond sites and 8 cargo bits (boolean values).

Here: Bond sites 0, 2 and 3 are bound, and 1 is unbound.

Cargo bits omitted for brevity.

— 8 —
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KEEPING THE FOCUS

How to structure a biologically feasible model of computation?

� Idea: keep current program counter and data cursor always

close to a focus point where all actions occur.

� How? Continually shift both program and data, to keep the

active bits near the focus.

Program p Data d�

�

�

�
�

�

�

�

�

�
�

�

*

Running program p: computing [[p]](d)

= Focus point for control and data
(connects the APB and the ADB)

* = program-to-data bond: “the bug”

— 9 —

A MOVIE IS WORTH DURATION×FRAMERATE×1000

WORDS

(Circle.avi)

— 10 —

ABOUT INSTRUCTIONS:

Instruction form:
opcode parameters (bond0, bond1, bond2, bond3)

Why exactly 4 bonds?

� Predecessor (1 bond); true and false successors (2 bonds);

� plus one bond to link the APB to the ADB.

It’s almost a von Neumann machine code, but. . .

� A bond is a two-way link between two adjacent blobs.

� A bond is not an address.

� There is no address space as in conventional computer (and

hence: no address decoding hardware).

� Also: no registers (use the cargo bits instead).

— 11 —
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INSTRUCTIONS HAVE 8 BITS

Instruction Description Informal semantics (write :=: for a two-way interchange)

SCG v c Set CarGo bit ADB.c := v; APB := APB.2

JCG c Jump CarGo bit if ADB.c = 0 then APB := APB.3 else APB := APB.2

JB b Jump Bond if ADB.b = ⊥ then APB := APB.3 else APB := APB.2

CHD b CHange Data ADB := ADB.b; APB := APB.2

INS b1 b2 INSert new bond ADB-new.b2 :=: ADB.b1; ADB-new.b1 :=: ADB.b1.bs;

— APB := APB.2

SBS b1 b2 SWap Bond Sites ADB.b1 :=: ADB.b2; APB := APB.2

SWL b1 b2 SWap Links ADB.b1 :=: ADB.b2.b1; APB := APB.2

SWP3 b1 b2 Swap bs3 on linked ADB.b1.3 :=: ADB.b2.3; APB := APB.2

FIN Fan IN APB := APB.2 (two predecessors: bond sites 1 and 3)

EXT EXiT program

SCG,. . . ,EXT: Operation codes

b, b1, b2: Bond site numbers

c: Cargo site number

v: A one-bit value

— 12 —

EXAMPLE: EFFECT OF SCG 1 5 (SET CARGO BIT 5 TO 1)

�
�
�
�APB APB

a
1

�
�
�
�
⊥

APB′ APB′a
0

*

�
�

�
�

�
�
�
�

?
5

ADB ADB

⇒

�
�
�
�⊥

a
0

�
�
�
�

a
1

������������

*�
�

�
�

�
�
�
�

1
5

Program Data Program Data

� “The bug”
∗
— has moved:

• before execution, it connected APB with ADB.

• After: it connects successor APB′ with ADB.

� Also: activation bits 0, 1 have been swapped.

Instruction syntax: the 8-bit string 11001101 is grouped as

a
︷︸︸︷

1
SCG
︷︸︸︷

100
v

︷︸︸︷

1
c

︷︸︸︷

101

— 13 —

SEMANTICS OF SCG 1 5 BY ”SOMETHING LIKE” A

CHEMICAL REACTION RULE

Instruction form:
a

︷︸︸︷

1
SCG
︷︸︸︷

100
v

︷︸︸︷

1
c

︷︸︸︷

101

APB
︷ ︸︸ ︷

B[1 100 1 101](∗ - - - ),

APB′
︷ ︸︸ ︷

B[0 - - - - - - -](⊥ - - - ),

ADB
︷ ︸︸ ︷

B[0 - - - - x - - ](∗ - - - )

⇒

B[0 100 1 101](⊥ - - - )
︸ ︷︷ ︸

APB

, B[1 - - - - - - -](∗ - - - )
︸ ︷︷ ︸

APB′
, B[0 - - - - 1 - - ](∗ - - - )

︸ ︷︷ ︸

ADB

( - = unchanged bond or cargo bit)

Similar style to: Danos and Laneve, Formal Molecular Biology.

— 14 —
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TURING COMPLETENESS BY INTERPRETATION

Turing completeness is usually shown by simulation, e.,g.,

� for any 2CM program you build a biomolecular system such

that . . .

But: the biomolecular system is usually built by hand. The

effect: hand computation of the ∃ quantifier in

∀p∃q([[p]]L = [[q]]M)

In contrast, Turing’s original “Universal machine” (UM) works

by interpretation, where ∃ is realised by machine.

� The UM can execute any TM program, if coded on the UM’s

tape along with its input data.

� Our research follows Turing’s line, in a biological context:

It does simulation by general interpretation, and not by one-

problem-at-a-time constructions.

— 15 —

PROGRAM EXECUTION BY INTERPRETATION

�
[[interpreter]](program, datain) = dataout

� Now program is a passive data object: both program and

datain are data for the interpreter.

� program is now executed by running the interpreter program.

(Of course, some mechanism will be needed to run the

interpreter, e.g., hard-, soft- or wetware.)

� Self-interpretation is possible, and useful in practice.

� The Universal Turing machine is a self-interpreter.

— 16 —

A “BLOB UNIVERSAL MACHINE”

We have programmed a self-interpreter for the blob formalism

– analogous to Turing’s original universal machine.

This gives: Turing-completeness in a new biological framework.

— 17 —
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BIRDS-EYE VIEW OF THE SELF-INTERPRETER

(Not shown: Each ’finger’ along the periphery has a connection to the main control in the center)

— 18 —

CONTRIBUTIONS OF THIS WORK

� Programmable bio-level computation where programs = data.

� Blob semantics by abstract biochemical reaction rules.

� All computable functions are blob-computable:

• Can do with one fixed, set of reaction rules (defining a

fixed instruction set, i.e., a “machine language”)

• Don’t need new rule sets (i.e., biochemical architectures)

to solve new problems; it’s enough to write new programs.

� (Uniform) Turing-completeness

� Promise of tighter analogy between universality and

self-reproduction.

� Interpreters and compilers make sense at biological level,

may give useful operational and utilitarian tools.

— 19 —

WHERE TO NOW?

Some points to address:

� Find a true, biological (not just “feasible”) implementation

of the fixed set of reduction rules in vitro.

� Programs are currently similar to classical machine code; this

requires programmer skill. Solution: Devise an intermediate-

level blob programming language.

� Still to analyse: The time or energy cost of performing a

single program step (may depend on program/data). An

appropriate and realistic cost model should be found.

� Bonus: This could initiate a study of computational com-

plexity in the blob world.

— 20 —
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Reinvestigation of Symmetric Lambda Calculus

Yayoi Ueda Kenichi Asai
Ochanomizu University

Abstract

This paper presents a symmetric lambda calculus (SLC) in which both the duality between call-
by-value and call-by-name and the duality between expressions and continuations hold at the same
time. The idea of SLC was originally introduced by Filinski in 1989, but has not been investigated
seriously since then. This paper first reformulates SLC using small-step reduction semantics in a
completely symmetric way. We then show call-by-value and call-by-name evaluation strategies for
SLC and prove that both enjoy various formal properties, such as subject reduction. Finally, we
prove that the small-step semantics shown here coincides with Filinski’s original definition of SLC
using the functional correspondence approach: the two semantics are related via defunctionalization.

Keywords: symmetric lambda calculus, control operators, functional correspondence, defunctional-
ization

1 Introduction

Background and related work In 1990, Griffin [7] showed the correspondence between the law of
double-negation elimination in classical logic and the control operator C introduced by Felleisen and
Hieb [5]. Since then, many researchers explored the foundational theory for continuations and control
operators. Parigot [8] introduced λµ-calculus and showed that it corresponds to the classical natural
deduction. Curien and Herbelin [3] introduced λµµ̃-calculus that exhibits symmetry between expressions
and continuations as well as between call-by-value (CBV) and call-by-name (CBN) based on the classical
sequent calculus. Selinger [12] gave a categorical semantics to λµ-calculus and showed categorical duality
between CBV and CBN. These work led to Wadler’s Dual Calculus [14] that shows CBV/CBN symmetry
in a particularly clear way in a simple syntax and operational semantics. Tzevelekos [13] studied the
Dual Calculus in detail and showed various syntactic properties.

Underlying these work is an intuition that expressions and continuations are dual. Surprisingly, this
observation was made as early as in 1989 by Filinski [6]. He presented a symmetric lambda calculus
(SLC) in which expressions and continuations are treated in a complete symmetry. Just like we abstract
over expressions to receive an argument expression, we can abstract over continuations in SLC to capture
the current continuation. This system has many implications. The CBV/CBN duality naturally arises
from the priority of execution: to execute expressions first leads to CBV and continuations first CBN.
The duality between types of expressions and continuations even suggests a relationship to classical logic
via de Morgan’s laws.

However, although most of the previous work mentioned Filinski’s work, none of them actually
investigated the relationship to SLC seriously. This is partly because Filinski’s SLC lacks small-step
reduction semantics. It makes it harder to compare Filinski’s SLC to other calculi such as Dual Calculus,
because they are often defined as small-step reduction semantics. This is unfortunate because SLC not
only contains the standard lambda-calculus naturally but also presents control operators in a particularly
simple and intuitive way.

The name symmetric lambda calculus was independently used by Barbanera and Berardi [2]. How-
ever, their work is quite different from Filinski’s SLC. Their calculus includes a notion of symmetric
application where either component of an application can be a function or an argument. They proved
the strong normalization property of this calculus.

This work This paper investigates small-step reduction semantics for Filinski’s SLC. It handles both
non-deterministic, CBV, and CBN evaluation strategies. The non-deterministic semantics exhibits com-

10



expression e ::= n | x | () | (e, e) | e ↑ f | �f�
function f ::= g | p ⇒ e | c ⇐ q | e | c
continuation c ::= • | y | {} | {c, c} | f ↓ c | �f�
pattern for e p ::= x | () | �g� | (p, p)
pattern for c q ::= y | {} | �g� | {q, q}

Figure 1: Syntax of SLC

plete symmetry, whereas CBV and CBN strategies are dual to each other. A type system for SLC
is shown which satisfies various properties such as subject reduction. The paper then shows that the
small-step semantics presented here and the original denotational semantics of SLC given by Filinski
are in functional correspondence with each other. This work is also a non-trivial application of Danvy’s
functional correspondence approach [1, 4].

Overview In the next Section, we introduce SLC, its syntax, types, typing rules, non-deterministic
reduction rules, and some properties. In Section 3, we show the CBV strategy and its properties such as
uniqueness of evaluation. In Section 4, we show the CBN strategy and its properties. We defunctionalize
Filinski’s original CBV denotational semantics, and show the correspondence between the two SLC’s in
Section 5. Finally, we also defunctionalize Filinski’s CBN semantics and show their correspondence in
Section 6.

2 Symmetric Lambda Calculus

This section introduces the symmetric lambda calculus (SLC). A standard way to represent reduction
semantics is to use an evaluation context: E[M ] � E[M ′] if M � M ′. In SLC, we represent it
with a configuration 〈 e | c 〉, where e is an expression (corresponding to M) and c is a continuation
(corresponding to E[ ]). In addition, SLC has three-place configuration 〈 e | f | c 〉 which represents that
an expression e is passed to a function f in a context c. In SLC, an evaluation context and searching
for a redex are both explicit in a configuration. SLC calculates an expression and a continuation in a
completely dual manner.

2.1 Syntax

Figure 1 shows the syntax of SLC.1 An expression e is either a natural number n, a variable x, a unit
(), a pair of expressions (e, e), an application e ↑ f , or a function treated as an expression �f�. An
application e ↑ f passes an expression e to a function f . Unlike the standard lambda-calculus, a function
f is placed after the argument e. In SLC, an expression and a function are distinct syntactic objects.
To treat a function as an expression (to pass a higher-order function to another function, for example),
a function is tagged with � �.

A continuation is defined as a dual notion of an expression. A continuation c is either an initial
continuation •, a continuation variable y, a counit {}, a pair of continuations {c, c}, a continuation
application f ↓ c, which represents a continuation that applies f before passing a value to c, or a
function treated as a continuation �f�. An initial continuation • represents a continuation that receives
a natural number n. When the initial continuation receives a natural number n, the computation finishes
with the result n. The counit {} represents a continuation that never receives any value.

A function is either a function variable g, an expression abstraction p ⇒ e which binds the current
expression to p and replaces the expression with e, a continuation abstraction c ⇐ q which binds the
current continuation to q and replaces the continuation with c, e an expression that evaluates to a
function �f�, or c a continuation that evaluates to a function �f�.

1This syntax slightly deviates from Filinski’s original syntax. Filinski used f ↑ e and q ⇒ c instead of our e ↑ f
and c ⇐ q, respectively. We changed the syntax because the new syntax exhibits beautiful symmetry when written in a
small-step semantics.
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T ::= +A (types of expressions e)
| A ⊃ B (types of functions f)
| ¬B (types of continuations c)

A, B ::= ⊥ | 
 | int | A ∧ B | A ∨ B | A → B | A − B

Figure 2: Types of SLC

An expression abstraction p ⇒ e has a pattern p as its formal argument. If the pattern is a variable
x, x ⇒ e corresponds to λx.e in the standard lambda calculus. A pattern p can also be a unit, a pair, or
a function pattern �g�. Dually, q represents a pattern for a continuation abstraction c ⇐ q.

We assume that the sets of variable names for expressions, continuations, and functions do not overlap.
We use a meta variable var to represent any of the three kinds of variables.

As an example, Filinski represented call/cc in SLC as follows [6]:

call/cc = (�g� ⇒ �y ⇐ � ↑ g) ↓ y ⇐ y

where represents a dummy variable not used anywhere else. It grabs the current continuation in y and re-
places the current continuation with (�g� ⇒ �y ⇐ � ↑ g) ↓ y. The installed function (�g� ⇒ �y ⇐ � ↑ g)
receives a function g and passes the representation of the current continuation �y ⇐ � to g. The passed
continuation, when applied, will replace the then continuation with y, achieving jump to the continuation
captured in y. (See Section 2.4 for an example reduction sequence for call/cc.) Similarly, Felleisen’s C
operator can be defined as follows:

C = (�g� ⇒ �y ⇐ � ↑ g) ↓ • ⇐ y

2.2 Types

Figure 2 shows types of SLC. Since SLC consists of three syntactic objects, the types of SLC consist of
three types: an expression type +A, a continuation type ¬B, and a function type A ⊃ B.

The type +A represents a type of an expression. The prefix + indicates that it is a type of an
expression. The type ¬B represents a type of a continuation that receives a value of type +B. In this
paper we use ¬ for a type of continuations. The type A ⊃ B represents a type of functions that receive
an expression of type +A and return an expression of type +B. At the same time, it represents a type
of functions that receive a continuation of type ¬B and return a continuation of type ¬A. A function
has an implicative and contrapositive type together.

A neutral type A, B forms the inner structure of types. A neutral type is either true 
, false ⊥,
integer int, conjunction A ∧ B, disjunction A ∨ B, implication A → B, or minus A − B.2 The type +

is a type of () and ¬⊥ is a type of {}.

2.3 Typing Rules

The typing rules of SLC are shown in Figure 3. The left column shows typing rules for expressions,
while the right for continuations. Let Γ be a type environment. We write Γ � e : +A to mean that an
expression e has a type +A under Γ, and similarly for a continuation and for a function.

The type environment Γ is defined as a set of type bindings var : T , where all the variables occurring in
a type environment have to be distinct. Given a type environment Γ, we define Γp as a type environment
where bindings for variables in the pattern p are removed (Figure 4).

The typing rules for expressions are mostly standard. To support a nested pattern for abstractions,
the judgement Γ �p p : +A for expression patterns (and Γ �q q : ¬B for continuation patterns) is
introduced, which is defined in the second part of Figure 3. The typing rules for continuations are
obtained by taking the dual of the ones for expressions. In the rule TOr, a pair of continuations is given
a disjunctive continuation type. Logically, it is a de Morgan dual of ¬A ∧ ¬B. The rule TApp says that
f ↓ c as a whole can be regarded as a continuation of type ¬A: it receives a value of type +A, turns it

2The intuitive logical meaning of minus operator A − B is ¬(¬B → ¬A). Filinski expresses this type as [A ← B] [6].
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Γg ∪ {g : A ⊃ B} � g : A ⊃ B
TFVar

Γx ∪ {x : +A} � x : +A
TVar

Γy ∪ {y : ¬B} � y : ¬B
TVar

Γ � n : +int
TInt Γ � () : +
 TUnit

Γ � {} : ¬⊥ TUnit Γ � • : ¬int TInt

Γ � e1 : +A Γ � e2 : +B

Γ � (e1, e2) : +(A ∧ B)
TAnd

Γ � c1 : ¬A Γ � c2 : ¬B

Γ � {c1, c2} : ¬(A ∨ B) TOr

Γ �p p : +A Γ � e : +B

Γp � p ⇒ e : A ⊃ B
TFun

Γ � c : ¬A Γ �q q : ¬B

Γq � c ⇐ q : A ⊃ B TFun

Γ � e : +A Γ � f : A ⊃ B

Γ � e ↑ f : +B
TApp

Γ � f : A ⊃ B Γ � c : ¬B

Γ � f ↓ c : ¬A
TApp

Γ � f : A ⊃ B

Γ � �f� : +(A → B)
TFClo

Γ � f : A ⊃ B

Γ � �f� : ¬(A − B) TFClo

Γ � e : +(A → B)
Γ � e : A ⊃ B

TCFun
Γ � c : ¬(A − B)

Γ � c : A ⊃ B TCFun

Γ �p () : +
 PUnit
Γ �q {} : ¬⊥ QUnit

Γx ∪ {x : +A} �p x : +A
PVar

Γy ∪ {y : ¬B} �q y : ¬B
QVar

Γg ∪ {g : A ⊃ B} �p �g� : +(A → B)
PFClo

Γg ∪ {g : A ⊃ B} �q �g� : ¬(A − B)
QFClo

Γp2 �p p1 : +A Γp1 �p p2 : +B

Γ �p (p1, p2) : +(A ∧ B)
PAnd

Γq2 �q q1 : ¬A Γq1 �q q2 : ¬B

Γ �q {q1, q2} : ¬(A ∨ B)
QOr

� e : +A � c : ¬A

� 〈 e | c 〉 TProg1
� e : +A � f : A ⊃ B � c : ¬B

� 〈 e | f | c 〉 TProg2

Figure 3: Typing Rules for SLC

Γvar = {(var′ : T ) ∈ Γ | var′ �= var}
Γ() = Γ Γ{} = Γ

Γ�g� = Γg Γ�g� = Γg

Γ(p1, p2) = (Γp1)p2 Γ{q1, q2} = (Γq1)q2

Figure 4: Definition of Environment Removed Patterns
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(begin) e : +int � 〈 e | • 〉
(left) 〈 (e1, e2) | c 〉 � 〈 e1 | (x ⇒ (x, e2)) ↓ c 〉
(right) 〈 (e1, e2) | c 〉 � 〈 e2 | (x ⇒ (e1, x)) ↓ c 〉
(pop) 〈 e ↑ f | c 〉 � 〈 e | f | c 〉
(push) 〈 e | f | c 〉 � 〈 e | f ↓ c 〉
(exc) 〈 e | e′ | c 〉 � 〈 e′ | (�g� ⇒ e ↑ g) ↓ c 〉
(βL) 〈 e | p ⇒ e′ | c 〉 � 〈 e′ [L[[p]] �→ e] | c 〉
(βR) 〈 e | p ⇒ e′ | c 〉 � 〈 e′ [R[[p]] �→ e] | c 〉 if e matches p

(βR) 〈 e | c′ ⇐ q | c 〉 � 〈 e | c′ [R[[q]] �→ c] 〉 if c matches q

(βL) 〈 e | c′ ⇐ q | c 〉 � 〈 e | c′ [L[[q]] �→ c] 〉
(exc) 〈 e | c′ | c 〉 � 〈 e ↑ (g ↓ c ⇐ �g�) | c′ 〉
(push) 〈 e | f | c 〉 � 〈 e ↑ f | c 〉
(pop) 〈 e | f ↓ c 〉 � 〈 e | f | c 〉
(right) 〈 e | {c1, c2} 〉 � 〈 e ↑ ({c1, y} ⇐ y) | c2 〉
(left) 〈 e | {c1, c2} 〉 � 〈 e ↑ ({y, c2} ⇐ y) | c1 〉
(end) 〈 n | • 〉 � n

Figure 5: Non-Deterministic Small-Step Semantics of SLC

into a value of type +B using f , and passes the result to c. In other words, the function f transforms a
continuation of type ¬B to a continuation of type ¬A, effectively acting as a function from ¬B to ¬A.

The rules TProg1 and TProg2 at the bottom of Figure 3 are the typing rules for configurations. A
configuration is well-typed if all of its components are well-typed under an empty environment.

In this type system, the function call/cc has a function type ((A → B) → A) ⊃ A (what we call
Peirce’s Law).

2.4 Reduction Rules (Non-Deterministic)

In the pure lambda-calculus, reduction rules are written as a binary relation between terms because
it consists of only terms. SLC operates not only on expressions but also on continuations. Therefore,
reduction rules of SLC are written as a binary relation between configurations, 〈 e | c 〉 or 〈 e | f | c 〉.
Figure 5 shows the (non-deterministic) reduction rules of SLC.

In the standard lambda-calculus, reduction proceeds by decomposing the input into a redex and a
context, reducing the redex, and plugging the result into the context. In SLC, such decomposition and
plugging are described within the reduction rules. If the expression e in a configuration 〈 e | c 〉 is an
application, its function part is popped from the application via (pop) and the focus of reduction moves
to the function part. In case we do not want to perform β-reduction of the popped function right now,
the rule (push) pushes the function to the continuation part and the argument is further reduced. In
case the function is not a value, on the other hand, the rule (exc) is used to exchange e and e′ to move
the focus to e′. After e′ is reduced to �f�, the function �g� ⇒ e ↑ g brings it back into an application.
Similarly, (left) and (right) reduce the left and right elements of a pair, respectively.

SLC has two kinds of β-reduction, eager one (βR) and lazy one (βL), depending on how to handle
pattern matching. Eager β-reduction requires the argument to match the pattern at reduction time,
deconstructs it, and binds variables in the pattern to each component using R defined in Figure 6. Lazy
one does not deconstruct the argument but binds variables in the pattern to code that deconstructs the
argument when the variables are used later (see the definition of L in Figure 6). The former is required
to perform the real deconstruction of patterns, while the latter enables to defer pattern matching as long
as possible (like the irrefutable pattern in Haskell).

The reduction rules for continuations are defined completely symmetrically to those for expressions.
In particular, we can freely capture the current continuation using continuation abstractions, just as we
can freely receive the current expression using expression abstractions.

As an example of reduction, we can capture the current continuation in x by passing a function
�x ⇒ e� to call/cc. See Figure 7.
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[R[[x]] �→ e] = [e/x]
[R[[()]] �→ e] = []

[R[[�g�]] �→ �f�] = [f/g]
[R[[(p1, p2)]] �→ (e1, e2)] = [R[[p1]] �→ e1][R[[p2]] �→ e2]
[R[[{q1, q2}]] �→ {c1, c2}] = [R[[q1]] �→ c1][R[[q2]] �→ c2]

[R[[�g�]] �→ �f�] = [f/g]
[R[[{}]] �→ c] = []
[R[[y]] �→ c] = [c/y]

[L[[x]] �→ e] = [e/x]
[L[[()]] �→ e] = []

[L[[�g�]] �→ e] = [e/g]
[L[[(p1, p2)]] �→ e] = [L[[p1]] �→ e ↑ ((x1, x2) ⇒ x1)][L[[p2]] �→ e ↑ ((x1, x2) ⇒ x1)]
[L[[{q1, q2}]] �→ c] = [L[[q1]] �→ (y1 ⇐ {y1, y2}) ↓ c][L[[q2]] �→ (y2 ⇐ {y1, y2}) ↓ c]

[L[[�g�]] �→ c] = [c/g]
[L[[{}]] �→ c] = []
[L[[y]] �→ c] = [c/y]

Figure 6: Definition of Eager and Lazy Substitution

〈 �x ⇒ e� | call/cc | c 〉
� 〈 �x ⇒ e� | (�g� ⇒ �y ⇐ � ↑ g) ↓ y ⇐ y | c 〉 (definition of call/cc)
� 〈 �x ⇒ e� | (�g� ⇒ �c ⇐ � ↑ g) ↓ c 〉 (βR)
� 〈 �x ⇒ e� | �g� ⇒ �c ⇐ � ↑ g | c 〉 (pop)
� 〈 �c ⇐ � ↑ (x ⇒ e) | c 〉 (βR)
� 〈 �c ⇐ � | x ⇒ e | c 〉 (pop)
� 〈 e[�c ⇐ �/x] | c 〉 (βR)

Figure 7: Example Reduction of call/cc

There can be multiple rules that are applicable to the same configuration. Furthermore, the reduction
rules are not Church-Rosser, that is, the result of evaluation can be different values. For example, the
configuration 〈 1 ↑ (• ⇐ y) | (x ⇒ 2) ↓ • 〉 has the following two different reductions:

〈 1 ↑ (• ⇐ y) | (x ⇒ 2) ↓ • 〉 〈 1 ↑ (• ⇐ y) | (x ⇒ 2) ↓ • 〉
� 〈 1 | • ⇐ y | (x ⇒ 2) ↓ • 〉 (pop) � 〈 1 ↑ (• ⇐ y) | (x ⇒ 2) | • 〉 (pop)
� 〈 1 | • 〉 (β) � 〈 2 | • 〉 (β)
� 1 (end) � 2 (end)

This is not surprising. Without fixing the evaluation strategy, the result can be different. In a functional
language, for example, (λx.1)(3/0) is reduced to 1 in CBN and an error in CBV. To recover uniqueness
of evaluation, we introduce CBV evaluation strategy into SLC in Section 3 and CBN one in Section 4.

2.5 Properties of non-deterministic SLC

Without specifying the evaluation strategy, the small-step reduction semantics for non-deterministic SLC
is sound with respect to the type system. Let 〈...〉 (possibly with a subscript) denote either a two-place
configuration 〈 e | c 〉 or a three-place configuration 〈 e | f | c 〉. We can show the progress by simple
case analysis and the preservation using the substitution lemma.

Theorem 2.1 (Progress)
If � 〈...〉1, then 〈...〉1 � 〈...〉2 for some 〈...〉2 or 〈...〉1 = 〈 n | • 〉 for some n.
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value v ::= n | x | () | (v, v) | �f� | [v ↑ inl] | [v ↑ inr] | [v ↑ (g ↓ c ⇐ �g�)]
expression e ::= v | (e, e) | e ↑ f

function f ::= g | p ⇒ e | c ⇐ q | e | c
continuation c ::= • | y | {} | {c, c} | f ↓ c | �f� | [inl ↓ c] | [inr ↓ c]

Figure 8: Syntax of CBV SLC

Γ � v : +A

Γ � [v ↑ inl] : +(A ∨ B)
TInl

Γ � c : ¬(A ∨ B)
Γ � [inl ↓ c] : ¬A

TInl

Γ � v : +B

Γ � [v ↑ inr] : +(A ∨ B)
TInr

Γ � c : ¬(A ∨ B)
Γ � [inr ↓ c] : ¬B

TInr

Γ � v : +A Γ � c : ¬B

Γ � [v ↑ (g ↓ c ⇐ �g�)] : +(A − B)
TCtx

Figure 9: Additional Typing Rules for CBV SLC

Theorem 2.2 (Preservation)
Assume � 〈...〉1. If 〈...〉1 � 〈...〉2, then � 〈...〉2.

3 CBV SLC

The reduction rules in Figure 5 are non-deterministic. In this section, we introduce the CBV evaluation
strategy into SLC. Under CBV, an argument is evaluated to a value before β-reduction. In SLC, it
means that the evaluation goes from the expression side of the configuration 〈...〉, or from left to right of
〈...〉. To enforce this evaluation strategy, we first introduce a value into the syntax of SLC as in Figure 8.
In addition to integers, variables, units, pairs of values, and higher-order functions, the value contains
three frozen values that are expressions enclosed in brackets. In the non-deterministic setting, they are
operationally the same as the expressions without brackets using the following interpretation:

inl = y1 ⇐ {y1, y2}
inr = y2 ⇐ {y1, y2}

In the CBV setting, they are used to control the order of evaluation. Likewise, we have introduced two
frozen continuations. The typing rules for the frozen values and frozen continuations are the same as
those without brackets. They are summarized in Figure 9.

Currently, values include a function value of the form �e�. If we want to exclude this case from
values, we could separate f into value functions and non-value functions, and include only the former
into values.

Figure 10 shows the reduction rules for CBV SLC. The rule names with the subscript v indicate
the rules that are changed from non-deterministic ones (Figure 5). The rule names with primes are
the reduction rules for frozen values/continuations. The rules marked with ∗ are ones directly obtained
from Filinski’s denotational semantics. We will explain it in detail in Section 5.2. Rules in Figure 10
are restriction of the reduction rules for the non-deterministic SLC in a way the evaluation order is
fixed to CBV: evaluation goes from left to right in the configuration 〈...〉. For example, the rule (βRv)
requires that the argument is fully evaluated (and hence the use of eager pattern deconstruction R);
the rules (leftv) and (rightv) force the left-to-right evaluation order for pairs. Rules for frozen val-
ues/continuations first arise in (excv) when a continuation appears as a function. In this case, we freeze
v and c into [v ↑ (g ↓ c ⇐ �g�)] and evaluate c′. Here, we cannot remove the bracket (as in (exc) in
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(begin) e : +int � 〈 e | • 〉
(leftv) 〈 (e1, e2) | c 〉 � 〈 e1 | (x ⇒ (x, e2)) ↓ c 〉 if e1 �= v

(rightv) 〈 (v1, e2) | c 〉 � 〈 e2 | (x ⇒ (v1, x)) ↓ c 〉 if e2 �= v
(pop) 〈 e ↑ f | c 〉 � 〈 e | f | c 〉

(pushv) 〈 e | f | c 〉 � 〈 e | f ↓ c 〉 if e �= v
∗ (excv) 〈 v | e′ | c 〉 � 〈 e′ | (�g� ⇒ v ↑ g) ↓ c 〉
∗ (inl′) 〈 [v ↑ inl] | {c1, c2} 〉 � 〈 v | c1 〉
∗ (inr′) 〈 [v ↑ inr] | {c1, c2} 〉 � 〈 v | c2 〉
∗ (contx′) 〈 [v ↑ (g ↓ c ⇐ �g�)] | �f� 〉 � 〈 v | f | c 〉
∗ (βRv) 〈 v | p ⇒ e′ | c 〉 � 〈 e′ [R[[p]] �→ v] | c 〉
∗ (βLv) 〈 v | c′ ⇐ q | c 〉 � 〈 v | c′ [Lv[[q]] �→ c] 〉
∗ (inr′) 〈 v | [inr ↓ c] 〉 � 〈 [v ↑ inr] | c 〉
∗ (inl′) 〈 v | [inl ↓ c] 〉 � 〈 [v ↑ inl] | c 〉
∗ (excv) 〈 v | c′ | c 〉 � 〈 [v ↑ (g ↓ c ⇐ �g�)] | c′ 〉
∗ (popv) 〈 v | f ↓ c 〉 � 〈 v | f | c 〉
∗ (end) 〈 n | • 〉 � n

Figure 10: Small-Step Semantics for CBV SLC

[Lv[[{q1, q2}]] �→ c] = [Lv[[q1]] �→ [inl ↓ c]][Lv[[q2]] �→ [inr ↓ c]]
[Lv[[�g�]] �→ c] = [c/g]
[Lv[[{}]] �→ c] = []
[Lv[[y]] �→ c] = [c/y]

Figure 11: Definition of Lazy Substitution for CBV SLC

Figure 5), because it would lead to non-termination in CBV:

〈 v | c′ | c 〉 � 〈 v ↑ (g ↓ c ⇐ �g�) | c′ 〉 (exc)
� 〈 v | g ↓ c ⇐ �g� | c′ 〉 (pop)
� 〈 v | c′ ↓ c 〉 (βLv)
� 〈 v | c′ | c 〉 (popv)

By temporarily freezing the application [v ↑ (g ↓ c ⇐ �g�)] as a value, we enforce the evaluation of c′.
The frozen value is destructed in (contx′) only when the evaluation of c′ is finished. Filinski called this
frozen value [v ↑ (g ↓ c ⇐ �g�)] a context.

Because the evaluation goes from left to right, an interesting asymmetry arises between expression
abstractions and continuation abstractions: although the argument to an expression abstraction is always
a value in CBV, the argument continuation to a continuation abstraction is not a value in general. In
other words, an expression abstraction is evaluated in CBV but a continuation abstraction is evaluated
in CBN.

Because the argument continuation in (βLv) is not evaluated yet, we cannot use the eager pattern
deconstruction here. Instead, we use the CBV lazy pattern deconstruction shown in Figure 11. Unlike L
(in Figure 6), Lv introduces frozen injections ([inl ↓ c] and [inr ↓ c]) to defer the pattern deconstruction.
They force the evaluation of continuations only when the pattern deconstruction is actually needed in
(inl′) or (inr′).

3.1 Properties of CBV SLC

Since the CBV reduction semantics is a special case of the non-deterministic reduction semantics, the
preservation holds for CBV reduction semantics. As for the progress, we can show by simple case analysis
that the CBV reduction semantics satisfies the following stronger property:
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expression e ::= n | x | () | (e, e) | e ↑ f | �f� | [e ↑ fst] | [e ↑ snd]
function f ::= g | p ⇒ e | c ⇐ q | e | c

continuation c ::= k | {c, c} | f ↓ c
covalue k ::= • | y | {} | {k, k} | �f� | [(�g� ⇒ e ↑ g) ↓ k] | [fst ↓ k] | [snd ↓ k]

Figure 12: Syntax of CBN SLC

Γ � e : +(A ∧ B)
Γ � [e ↑ fst] : +A

TFst
Γ � k : ¬A

Γ � [fst ↓ k] : ¬(A ∧ B) TFst

Γ � e : +(A ∧ B)
Γ � [e ↑ snd] : +B

TSnd
Γ � k : ¬B

Γ � [snd ↓ k] : ¬(A ∧ B) TSnd

Γ � e : +A Γ � k : ¬B

Γ � [(�g� ⇒ k ↑ g) ↓ e] : ¬(A → B) TCtx

Figure 13: Additional Typing Rules of CBN SLC

Theorem 3.1 (The Uniqueness of Reduction in CBV SLC)
Under CBV, if � 〈...〉, then there is exactly one reduction rule applicable to 〈...〉.

Furthermore, using the standard logical relation argument (as found in [9, Section 12]) tailored for
SLC, we can show the following theorem:

Theorem 3.2 (Termination of Evaluation in CBV SLC)
Under CBV, if � e : +int, then there exists a unique n such that e �∗ n.

4 CBN SLC

The CBN evaluation strategy evaluates expressions only when it is needed by its context. In other words,
the evaluation goes from the continuation side, or from right to left of 〈...〉. Because of this duality, CBN
SLC can be mechanically obtained by repeating the construction of CBV SLC in the previous section
with the roles of expressions and continuations swapped: the evaluation goes from the continuation
side of the configuration 〈...〉, or from right to left of 〈...〉. The result is a mirror image of CBV SLC.
Furthermore, the same properties hold for CBN SLC.

Dually to CBV SLC, we first introduce a covalue (that is a value of continuations) into the syntax
of SLC as in Figure 12. It is defined as completely dual notion of the value v in CBV SLC. Therefore
the covalue contains three frozen covalues that are continuations enclosed in brackets. In the non-
deterministic setting, they are operationally the same as the continuations without brackets using the
following interpretation:

fst = (x1, x2) ⇒ x1

snd = (x1, x2) ⇒ x1

In the CBN setting, they are used to control the order of evaluation. Likewise, we have introduced two
frozen expressions. Figure 13 shows typing rules for frozen covalues and frozen expressions.

Figure 14 shows the reduction rules for CBN SLC. The rule names with the subscript n indicate
the rules that are changed from non-deterministic ones (Figure 5). The rule names with primes are the
reduction rules for frozen expressions/covalues. The rules marked with ∗ are the ones directly obtained
from Filinski’s denotational semantics. We will explain it in detail in Section 6.2. Rules in Figure 14 are
restriction of the reduction rules for the non-deterministic SLC in a way the evaluation order is fixed to
CBN: evaluation goes from right to left in the configuration 〈...〉.
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(begin) e : +int � 〈 e | • 〉
∗ (popn) 〈 e ↑ f | k 〉 � 〈 e | f | k 〉
∗ (excn) 〈 e | e′ | k 〉 � 〈 e′ | [(�g� ⇒ e ↑ g) ↓ k] 〉
∗ (fst′) 〈 [e ↑ fst] | k 〉 � 〈 e | [fst ↓ k] 〉
∗ (snd′) 〈 [e ↑ snd] | k 〉 � 〈 e | [snd ↓ k] 〉
∗ (βLn) 〈 e | p ⇒ e′ | k 〉 � 〈 e′[Ln[[p]] �→ e] | k 〉
∗ (βRn) 〈 e | c′ ⇐ q | k 〉 � 〈 e | c′[R[[q]] �→ k] 〉
∗ (contx′) 〈 �f� | [(�g� ⇒ e ↑ g) ↓ k] 〉 � 〈 e | f | k 〉
∗ (snd′) 〈 (e1, e2) | [snd ↓ k] 〉 � 〈 e2 | k 〉
∗ (fst′) 〈 (e1, e2) | [fst ↓ k] 〉 � 〈 e1 | k 〉
∗ (excn) 〈 e | c′ | k 〉 � 〈 e ↑ (g ↓ k ⇐ �g�) | c′ 〉

(pushn) 〈 e | f | c 〉 � 〈 e ↑ f | c 〉 if c �= k
(pop) 〈 e | f ↓ c 〉 � 〈 e | f | c 〉

(rightn) 〈 e | {c1, c2} 〉 � 〈 e ↑ ({c1, y} ⇐ y) | c2 〉 if c2 �= k

(leftn) 〈 e | {c1, k2} 〉 � 〈 e ↑ ({y, k2} ⇐ y) | c1 〉 if c1 �= k

∗ (end) 〈 n | • 〉 � n

Figure 14: Small-Step Semantics for CBN SLC

[Ln[[x]] �→ e] = [e/x]
[Ln[[()]] �→ e] = []

[Ln[[�g�]] �→ e] = [e/g]
[Ln[[(p1, p2)]] �→ e] = [Ln[[p1]] �→ [e ↑ fst]][Ln[[p2]] �→ [e ↑ snd]]

Figure 15: Definition of Lazy Substitution for CBN SLC

4.1 Properties of CBN SLC

Since the CBN reduction semantics is a special case of the non-deterministic reduction semantics, the
preservation holds for CBN reduction semantics. As for the progress, we can show by simple case analysis
that the CBN reduction semantics satisfies the following stronger property:

Theorem 4.1 (The Uniqueness of Reduction in CBN SLC)
Under CBN, if � 〈...〉, then there is exactly one reduction rule applicable to 〈...〉.

Furthermore, using the standard logical relation argument (as found in [9, Section 12]) tailored for
SLC, we can show the following theorem:

Theorem 4.2 (Termination of Evaluation in CBN SLC)
Under CBN, if � e : +int, then there exists a unique n such that e �∗ n.

5 Functional Correspondence for CBV SLC

In this section, we show that the CBV small-step semantics of SLC presented in Section 3 corresponds
to Filinski’s original definition of CBV SLC given as a denotational semantics. The method we use is
the functional correspondence of interpreters and abstract machines developed by Danvy and his group
[1, 4]: an abstract machine is a CPS-transformed defunctionalized interpreter. In our case, since Filinski’s
denotational semantics is already in (a kind of) CPS, the small-step semantics (an abstract machine)
can be obtained by defunctionalizing the denotational semantics.

Figure 16 shows Filinski’s denotational semantics for CBV SLC. Since the syntax of SLC consists of
three kinds, the semantics also consists of three functions: E , C, and F . In Filinski’s formulation, the
patterns do not contain the function pattern. The semantic functions are not expressed in the symmetric
manner, because SLC is mapped into the standard (asymmetric) lambda-calculus. In the semantics, ρ
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V al = Int + Unit() + Pair(V al × V al) + In1(V al) + In2(V al)+
Closr(V al → Cnt → Ans) + Contx(V al × Cont)

Cnt = V al → Ans
Env = Ide → (V al + Cnt)

E : e → Env → Cnt → Ans
E [[n]]ρκ = κ n
E [[x]]ρκ = let val(v) = ρ x in κ v

E [[(e1, e2)]]ρκ = E [[e1]] ρ (λv1.E [[e2]] ρ (λv2.κ pair(v1, v2)))
E [[()]]ρκ = κ unit()

E [[e ↑ f ]]ρκ = E [[e]] ρ (λv.F [[f ]]ρvκ)
E [[�f�]]ρκ = κ closr(λvκ′.F [[f ]]ρvκ′)

C : c → Env → V al → Ans
C[[y]]ρv = let cnt(κ) = ρ y in κ v

C[[{c1, c2}]]ρv = case v of in1(v′) : C[[c1]]ρv′ | in2(v′) : C[[c2]]ρv′ esac
C[[{}]]ρv = case v of esac

C[[f ↓ c]]ρv = F [[f ]] ρ v (λv′.C[[c]]ρv′)
C[[�f�]]ρv = let contx(v′, κ) = v in F [[f ]]ρv′κ

F : f → Env → V al → Cnt → Ans
F [[X ⇒ e]]ρvκ = E [[e]] ([X [[X]] �→ v]ρ) κ
F [[c ⇐ Y ]]ρvκ = C[[c]] ([Y[[Y ]] �→ κ]ρ) v

F [[e]]ρvκ = E [[e]] ρ (λv′.let closr(h) = v′ in h v κ)
F [[c]]ρvκ = C[[c]] ρ contx(v, κ)

X : X → V al → Env → Env
[X [[x]] �→ v]ρ = ρ[x �→ val(v)]
[X [[()]] �→ v]ρ = let unit() = v in ρ

[X [[(X1, X2)]] �→ v]ρ = let pair(v1, v2) = v in [X [[X1]] �→ v1]([X [[X2]] �→ v2]ρ)

Y : Y → Cnt → Env → Env
[Y[[y]] �→ κ]ρ = ρ[y �→ cnt(κ)]

[Y[[{}]] �→ κ]ρ = ρ
[Y[[{Y1, Y2}]] �→ κ]ρ = [Y[[Y1]] �→ λv.κ in1(v)] ([Y[[Y2]] �→ λv.κ in2(v)]ρ)

Figure 16: Filinski’s Denotational Semantics for CBV SLC

represents an environment, v represents a value (the result of evaluation), and κ represents a semantic
continuation. Filinski introduces a domain for each value type (e.g., Pair) together with a constructor
for it (in lower case letter, e.g., pair).

We will not go into details of this denotational semantics. Rather, we regard this semantics as a
definitional interpreter for SLC and defunctionalize it. Defunctionalization, introduced by Reynolds [10],
is a whole-program transformation to remove higher-order functions. Every higher-order function in a
program is replaced with a unique constructor whose arguments are free variables of the higher-order
function. When the higher-order function is applied, a newly introduced apply function A is used instead,
which, given the actual argument, will execute the body of the higher-order function. This way, all the
higher-order functions are replaced with first-order data.

5.1 Defunctionalization

We defunctionalize two kinds of higher-order functions in Figure 16: continuations (κ of type Cnt) and
closures (the argument of closr).3 The result of defunctionalization is found in the upper left of Figure 17.

3The latter is sometimes called closure conversion.
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Defunctionalized Semantics Corresponding Abstract Machine

E : e → Env → Cnt → Ans
E [[n]]ρκ = A κ n
E [[x]]ρκ = let val(v) = ρ x in A κ v
E [[(e1, e2)]]ρκ = E [[e1]] ρ (Ep1(e2, ρ, κ))
E [[()]]ρκ = A κ unit()
E [[e ↑ f ]]ρκ = E [[e]] ρ (Epp(f, ρ, κ))
E [[�f�]]ρκ = A κ Closr(f, ρ)

The rules coming from E
〈 [[n]]ρ | κ 〉 � 〈 n | κ 〉
〈 [[x]]ρ | κ 〉 � let val(v) = ρ x in 〈 v | κ 〉

� 〈 [[(e1, e2)]]ρ | κ 〉 � 〈 [[e1]]ρ | Ep1(e2, ρ, κ) 〉
〈 [[()]]ρ | κ 〉 � 〈 unit() | κ 〉

� 〈 [[e ↑ f ]]ρ | κ 〉 � 〈 [[e]]ρ | Epp(f, ρ, κ) 〉
〈 [[�f�]]ρ | κ 〉 � 〈 Closr(f, ρ) | κ 〉

C : c → Env → V al → Ans
C[[y]]ρv = let cnt(κ) = ρ y in A κ v
C[[{c1, c2}]]ρ in1(v) = C[[c1]]ρv
C[[{c1, c2}]]ρ in2(v) = C[[c2]]ρv
C[[{}]]ρv = case v of esac
C[[f ↓ c]]ρv = F [[f ]] ρ v (Cpp(c, ρ))
C[[�f�]]ρ contx(v, κ) = F [[f ]]ρvκ

The rules coming from C
〈 v | [[y]]ρ 〉 � let cnt(κ) = ρ y in 〈 v | κ 〉

∗ 〈 in1(v) | [[{c1, c2}]]ρ 〉 � 〈 v | [[c1]]ρ 〉
∗ 〈 in2(v) | [[{c1, c2}]]ρ 〉 � 〈 v | [[c2]]ρ 〉

〈 v | [[{}]]ρ 〉 � case v of esac
∗ 〈 v | [[f ↓ c]]ρ 〉 � 〈 v | [[f ]]ρ | Cpp(c, ρ) 〉
∗ 〈 contx(v, κ) | [[�f�]]ρ 〉 � 〈 v | [[f ]]ρ | κ 〉

F : f → Env → V al → Cnt → Ans
F [[X ⇒ e]]ρvκ = E [[e]] ([X [[X]] �→ v]ρ) κ
F [[c ⇐ Y ]]ρvκ = C[[c]] ([Y[[Y ]] �→ κ]ρ) v
F [[e]]ρvκ = E [[e]] ρ (Openr(v, κ))
F [[c]]ρvκ = C[[c]] ρ contx(v, κ)

The rules coming from F
∗ 〈 v | [[X ⇒ e]]ρ | κ 〉 � 〈 [[e]] ([X [[X]] �→ v]ρ) | κ 〉
∗ 〈 v | [[c ⇐ Y ]]ρ | κ 〉 � 〈 v | [[c]] ([Y[[Y ]] �→ κ]ρ) 〉
∗ 〈 v | [[e]]ρ | κ 〉 � 〈 [[e]]ρ | Openr(v, κ) 〉
∗ 〈 v | [[c]]ρ | κ 〉 � 〈 contx(v, κ) | [[c]]ρ 〉

A : Cnt → V al → Ans
A (Ep1(e2, ρ, κ)) v1 = E [[e2]] ρ (Ep2(v1, κ))
A (Ep2(v1, κ)) v2 = A κ pair(v1, v2)
A (Epp(f, ρ, κ)) v = F [[f ]]ρvκ
A (Cpp(c, ρ)) v = C[[c]]ρv
A (Openr(v, κ)) Closr(f, ρ) = F [[f ]]ρvκ
A (Inl(κ)) v = A κ in1(v)
A (Inr(κ)) v = A κ in2(v)
A Init n = n

The rules coming from A
� 〈 v1 | Ep1(e2, ρ, κ) 〉 � 〈 [[e2]]ρ | Ep2(v1, κ) 〉
� 〈 v2 | Ep2(v1, κ) 〉 � 〈 pair(v1, v2) | κ 〉
∗ 〈 v | Epp(f, ρ, κ) 〉 � 〈 v | [[f ]]ρ | κ 〉

〈 v | Cpp(c, ρ) 〉 � 〈 v | [[c]]ρ 〉
� 〈 Closr(f, ρ) | Openr(v, κ) 〉 � 〈 v | [[f ]]ρ | κ 〉
∗ 〈 v | Inl(κ) 〉 � 〈 in1(v) | κ 〉
∗ 〈 v | Inr(κ) 〉 � 〈 in2(v) | κ 〉
∗ 〈 n | Init 〉 � n

X : X → V al → Env → Env
[X [[x]] �→ v]ρ = ρ[x �→ val(v)]

[X [[()]] �→ unit()]ρ = ρ
[X [[(X1, X2)]] �→ pair(v1, v2)]ρ = [X [[X1]] �→ v1]([X [[X2]] �→ v2]ρ)

Y : Y → Cnt → Env → Env
[Y[[y]] �→ κ]ρ = ρ[y �→ cnt(κ)]

[Y[[{}]] �→ κ]ρ = ρ
[Y[[{Y1, Y2}]] �→ κ]ρ = [Y[[Y1]] �→ Inl(κ)]([Y[[Y2]] �→ Inr(κ)]ρ)

Figure 17: Defunctionalized Semantics and Corresponding Abstract Machine (CBV)
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n �→ n Init �→ •
unit() �→ () Ep1(e2, κ) �→ (x1 ⇒ (x1, e2)) ↓ κ

pair(v1, v2) �→ (v1, v2) Ep2(v1, κ) �→ (x2 ⇒ (v1, x2)) ↓ κ
in1(v) �→ [v ↑ inl] Epp(f, κ) �→ f ↓ κ
in2(v) �→ [v ↑ inr] Cpp(c) �→ c

Closr(f) �→ �f� Openr(v, κ) �→ (�g� ⇒ κ ↑ g) ↓ v
contx(v, κ) �→ [κ ↑ (g ↓ v ⇐ �g�)] Inl(κ) �→ [inl ↓ κ]

Inl(κ) �→ [inl ↓ κ]

Figure 18: Term Transformation for CBV Derivation

The translation is mechanical: whenever λ is used in Figure 16, it is replaced with a first-order data
and the corresponding clause is added to the apply function A. For example, λv.F [[f ]]ρvκ appearing in
E [[e ↑ f ]]ρκ of Figure 16 is translated to Epp(f, ρ, κ) where the free variables of λv.F [[f ]]ρvκ becomes the
arguments to Epp. The corresponding clause is added to the definition of A:

A (Epp(f, ρ, κ)) v = F [[f ]]ρvκ

so that the original body of λv.F [[f ]]ρvκ is executed. Since all the κ’s now become a first-order data, its
application is replaced with a call to the apply function A. For example, κ n in E [[n]]ρκ in Figure 16 is
translated to A κ n.

5.2 Rewriting to Abstract Machine Style

Because the four semantic functions, E , C, F , and A, in the defunctionalized interpreter are mutually
tail-recursive, the resulting interpreter can be directly regarded as an abstract machine. The right column
of Figure 17 shows the corresponding abstract machine. It is obtained by mechanically changing the
notation from E [[e]]ρκ, C[[c]]ρv, F [[f ]]ρvκ, and A κ v, to 〈 [[e]]ρ | κ 〉, 〈 v | [[c]]ρ 〉, 〈 v | [[f ]]ρ | κ 〉, and
〈 v | κ 〉, respectively.

From this abstract machine, we can derive our small-step reduction semantics by two more simple
transformations: replacing the environment with substitution and rewriting defunctionalized first-order
data in SLC syntax.

The abstract machine in Figure 17 uses an environment to realize substitution. The role of an
environment is to defer the substitution until the substituted variable is found. (As a slogan, “an
environment is a lazy substitution.”) We can simply remove all the environments (and semantic brackets)
by performing substitution whenever the environment is extended, namely, at the first two rules for F
in Figure 17. With this transformation, the first two rules for F becomes identical to the corresponding
rules ((βRv) and (βLv)) in Figure 10. After removing the environments, all the rules for variables become
useless, because they will never be used. Furthermore, the rule for a number becomes useless, because
it now becomes an identity transition: 〈 n | κ 〉 � 〈 n | κ 〉.

The second transformation is to rewrite defunctionalized first-order data in SLC syntax. Rather than
writing Epp(f, κ), for example, we can instead write f ↓ κ, because the rule for Epp(f, κ) is:

〈 v | Epp(f, κ) 〉 � 〈 v | f | κ 〉

By writing Epp(f, κ) as f ↓ κ, the rule becomes identical to (popv). Likewise, we change the notation for
all the first-order data as shown in Figure 18.

With the above two transformations, all the rules marked with ∗ in Figure 17 coincide with the
marked rules in the CBV small-step reduction semantics in Figure 10. The rules with � do not coincide
with the rules in Figure 10, but we can confirm that they can all be simulated by one or more reduction
steps of Figure 10. Furthermore, since X and Y are transformed to R and Lv (except for function
patterns), we conclude that the CBV small-step semantics in Figure 10 correctly implements Filinski’s
SLC.
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V al = Cnt → Ans
Cnt = Bcont + Zero + Case(Cnt × Cnt) + Pr1(Cnt) + Pr2(Cnt)+

Contx(V al → Cnt → Ans) + Closr(V al × Cnt)
Env = Ide → V al + Cnt

E : e → Env → Cnt → Ans
E [[n]]ρk = let bcont = k in n
E [[x]]ρk = let val(ν) = ρ x in ν k

E [[(e1, e2)]]ρk = case k of pr1(k′) : E [[e1]]ρk′ | pr2(k′) : E [[e2]]ρk′

E [[()]]ρk = case k of esac
E [[e ↑ f ]]ρk = F [[f ]] ρ (λk′.E [[e]]ρk′) k
E [[�f�]]ρk = let closr(ν, k′) = k in F [[f ]]ρνk′

C : c → Env → V al → Ans
C[[y]]ρν = let cnt(k) = ρ y in ν k

C[[{c1, c2}]]ρν = C[[c2]] ρ (λk2.C[[c1]] ρ (λk1.ν case(k1, k2)))
C[[{}]]ρν = ν zero()

C[[f ↓ c]]ρν = C[[c]] ρ (λk.F [[f ]]ρνk)
C[[�f�]]ρν = ν contx(λν ′k.F [[f ]]ρν′k)

F : f → Env → V al → Cnt → Ans
F [[p ⇒ e]]ρνk = E [[e]] ([X [[p]] �→ ν]ρ) k
F [[c ⇐ Y ]]ρνk = C[[c]] ([Y[[Y ]] �→ k]ρ) ν

F [[e]]ρνk = E [[e]] ρ closr(ν, k)
F [[c]]ρνk = C[[c]] ρ (λk′.let contx(h) = t in h ν k′)

X : p → V al → Env → Env
[X [[x]] �→ ν]ρ = ρ[x �→ val(ν)]
[X [[()]] �→ ν]ρ = ρ

[X [[(p1, p2)]] �→ ν]ρ = [X [[p1]] �→ λk.ν pr1(k)] ([X [[p2]] �→ λk.ν pr2(k)]ρ)

Y : q → Cnt → Env → Env
[Y[[y]] �→ k]ρ = ρ[y �→ cnt(k)]

[Y[[{}]] �→ k]ρ = let zero() = k in ρ
[Y[[{q1, q2}]] �→ k]ρ = let case(c1, c2) = k in [Y[[q1]] �→ c1] ([Y[[q2]] �→ c2]ρ)

Figure 19: Filinski’s Denotational Semantics for CBN SLC

6 Functional Correspondence for CBN SLC

Filinski also presented denotational semantics for CBN SLC. Using the same method presented in the
previous section, we can obtain the CBN small-step semantics. Although denotational semantics for
CBV SLC and CBN SLC look quite different (because they are encoded in a standard non-symmetric
lambda-calculus), the present results confirm that they are actually dual to each other. In this section,
we show that the CBN small-step semantics of SLC presented in Section 4 corresponds to Filinski’s
original definition of CBN SLC given as a denotational semantics.

Figure 19 shows denotational semantics of Filinski’s CBN SLC. In the semantics, k represents covalues
(the result of evaluation), and ν represents semantic values (that is not a result). Filinski introduces a
domain for each covalue type (e.g., Case) together with a constructor for it (in lower case letter, e.g.,
case).
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Defunctionalized Semantics Corresponding Abstract Machine

E : e → Env → Cnt → Ans
E [[n]]ρ bcont = n
E [[x]]ρk = let val(ν) = ρ x in A ν k
E [[(e1, e2)]]ρ pr1(k) = E [[e1]]ρk
E [[(e1, e2)]]ρ pr2(k) = E [[e2]]ρk
E [[()]]ρk = case k of esac
E [[e ↑ f ]]ρk = F [[f ]] ρ (Epp(e, ρ)) k
E [[�f�]]ρ closr(a, c) = F [[f ]]ρac

The rules coming from E
∗ 〈 [[n]]ρ | bcont 〉 � n

〈 [[x]]ρ | k 〉 � let val(ν) = ρ x in 〈 ν | k 〉
∗ 〈 [[(e1, e2)]]ρ | pr1(k) 〉 � 〈 [[e1]]ρ | k 〉
∗ 〈 [[(e1, e2)]]ρ | pr2(k) 〉 � 〈 [[e2]]ρ | k 〉

〈 [[()]]ρ | k 〉 � case k of esac
∗ 〈 [[e ↑ f ]]ρ | k 〉 � 〈 Epp(e, ρ) | [[f ]]ρ | k 〉
∗ 〈 [[�f�]]ρ | closr(ν, k) 〉 � 〈 ν | [[f ]]ρ | k 〉

C : c → Env → V al → Ans
C[[y]]ρν = let cnt(k) = ρ y in A ν k
C[[{c1, c2}]]ρν = C[[c2]] ρ (Cp2(c1, ρ, ν))
C[[{}]]ρν = A ν zero()
C[[f ↓ c]]ρν = C[[c]] ρ (Cpp(f, ρ, ν))
C[[�f�]]ρν = A ν Contx(f, ρ)

The rules coming from C
〈 ν | [[y]]ρ 〉 � let cnt(k) = ρ y in 〈 ν | k 〉

� 〈 ν | [[{c1, c2}]]ρ 〉 � 〈 Cp2(c1, ρ, ν) | [[c2]]ρ 〉
〈 ν | [[{}]]ρ 〉 � 〈 ν | zero() 〉

� 〈 ν | [[f ↓ c]]ρ 〉 � 〈 Cpp(f, ρ, ν) | [[c]]ρ 〉
〈 ν | [[�f�]]ρ 〉 � 〈 ν | Contx(f, ρ) 〉

F : f → Env → V al → Cnt → Ans
F [[p ⇒ e]]ρνk = E [[e]] ([X [[p]] �→ ν]ρ) k
F [[c ⇐ q]]ρνk = C[[c]] ([Y[[q]] �→ k]ρ) ν
F [[e]]ρνk = E [[e]] ρ closr(ν, k)
F [[c]]ρνk = C[[c]] ρ (Plug(ν, k))

The rules coming from F
∗ 〈 ν | [[p ⇒ e]]ρ | k 〉 � 〈 [[e]] ([X [[p]] �→ ν]ρ) | k 〉
∗ 〈 ν | [[c ⇐ q]]ρ | k 〉 � 〈 ν | [[c]] ([Y[[q]] �→ k]ρ) 〉
∗ 〈 ν | [[e]]ρ | k 〉 � 〈 [[e]]ρ | contx(ν, k) 〉
∗ 〈 ν | [[c]]ρ | k 〉 � 〈 Plug(ν, k) | [[c]]ρ 〉

A : V al → Cnt → Ans
A (Epp(e, ρ)) k = E [[e]]ρk
A (Cp2(c1, ρ, ν)) k2 = C[[c1]] ρ (Cp1(k2, ν))
A (Cp1(k2, ν)) k1 = A ν case(k1, k2)
A (Cpp(f, ρ, ν)) k = F [[f ]]ρνk
A (Plug(ν, k)) Contx(f, ρ) = F [[f ]]ρkν
A (Fst(ν)) k = A ν pr1(k)
A (Snd(ν)) k = A ν pr2(k)

The rules coming from A
〈 Epp(e, ρ) | k 〉 � 〈 [[e]]ρ | k 〉

� 〈 Cp1(c2, ρ, ν) | k1 〉 � 〈 Cp2(k1, ν) | [[c2]]ρ 〉
� 〈 Cp2(k1, ν) | k2 〉 � 〈 ν | case(k1, k2) 〉
∗ 〈 Cpp(f, ρ, ν) | k 〉 � 〈 ν | [[f ]]ρ | k 〉
� 〈 Plug(ν, k) | Contx(f, ρ) 〉 � 〈 ν | [[f ]]ρ | k 〉
∗ 〈 Fst(ν) | k 〉 � 〈 ν | pr1(k) 〉
∗ 〈 Snd(ν) | k 〉 � 〈 ν | pr2(k) 〉

X : p → V al → Env → Env
[X [[x]] �→ ν]ρ = ρ[x �→ val(ν)]
[X [[()]] �→ ν]ρ = ρ

[X [[(p1, p2)]] �→ ν]ρ = [X [[p1]] �→ Fst(ν)]([X [[p2]] �→ Snd(ν)]ρ)

Y : q → Cnt → Env → Env
[Y[[y]] �→ k]ρ = ρ[y �→ cnt(ν)]

[Y[[{}]] �→ {}]ρ = ρ
[Y[[{q1, q2}]] �→ case(k1, k2)]ρ = [Y[[q1]] �→ k1] ([Y[[q2]] �→ k2]ρ)

Figure 20: Defunctionalized Semantics and Corresponding Abstract Machine (CBN)
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n �→ n bcont �→ •
Epp(e) �→ e zero() �→ {}

Cp1(k2, ν) �→ ν ↑ ({y1, k2} ⇐ y1) pair(k1, k2) �→ {k1, k2}
Cp2(c1, ν) �→ ν ↑ ({c1, y2} ⇐ y2) pr1(k) �→ [fst ↓ k]
Cpp(f, ν) �→ ν ↑ f pr2(k) �→ [snd ↓ k]
Plug(ν, k) �→ ν ↑ (g ↓ k ⇐ �g�) Contx(f) �→ �f�

Fst(ν) �→ [ν ↑ fst] closr(ν, k) �→ [(�g� ⇒ k ↑ g) ↓ ν]
Snd(ν) �→ [ν ↑ snd]

Figure 21: Term Transformations for CBN Derivation

6.1 Defunctionalization

We defunctionalize two kinds of higher-order functions in Figure 19: values (ν of type V al) and contexts
(the argument of contx). The result of defunctionalization is found in the upper left of Figure 20.
The translation is mechanical and dual to the CBV derivation in Section 5.1. For example, though we
have defunctionalized a semantic continuation for e ↑ f in Section 5.1, here, we need to defunctionalize a
semantic value for f ↓ c. We translate the semantic value λk.F [[F ]]ρνk to Cpp(f, ρ, ν). The corresponding
clause is added to the definition of A:

A (Cpp(f, ρ, ν)) k = F [[f ]]ρνk

6.2 Rewriting to Abstract Machine Style

Because the four semantic functions, E , C, F , and A, in the defunctionalized interpreter are mutually
tail-recursive, the resulting interpreter can be directly regarded as an abstract machine. The right column
of Figure 20 shows the corresponding abstract machine. It is obtained by mechanically changing the
notation from E [[e]]ρk, C[[c]]ρν, F [[f ]]ρνk, and A ν k, to 〈 [[e]]ρ | k 〉, 〈 ν | [[c]]ρ 〉, 〈 ν | [[f ]]ρ | k 〉, and
〈 ν | k 〉, respectively.

From this abstract machine, we can derive our small-step reduction semantics by two more simple
transformations: replacing the environment with substitution and rewriting defunctionalized first-order
data in SLC syntax. First, we simply remove all the environments (and semantic brackets) by performing
substitution whenever the environment is extended. After removing the environments, all the rules for
variables become useless, because they will never be used. Secondly, we change the notation for all the
first-order data as shown in Figure 21.

With the above two transformations, all the rules marked with ∗ in Figure 20 coincide with the
marked rules in the CBN small-step reduction semantics in Figure 14. The rules with � do not coincide
with the rules in Figure 14, but we can confirm that they can all be simulated by one or more reduction
steps of Figure 14. Furthermore, since X and Y are transformed to Ln and R (except for function
patterns), we conclude that the CBN small-step semantics in Figure 14 correctly implements Filinski’s
SLC.

7 Future Direction

In this paper, we have presented a small-step reduction semantics for Filinski’s symmetric lambda calculus
(SLC). Now that we obtained a small-step reduction semantics for SLC, we can express and compare
various other calculi in terms of SLC. Our preliminary work shows that we can naturally encode Felleisen’s
C operator as well as λµ-calculus into SLC [11]. We are also interested in if delimited continuations can
be introduced into the SLC framework.
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Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

What is Symmetric Lambda Calculus (SLC)?

Symmetric extension of λ-calculus proposed by Filinski in 1989

Two kinds of duality:

Expressions produce data. CBV expressions first

Functions transform data.

Continuations consume data. CBN continuations first

1 −→ A −→ B −→ 0

Given: denotational semantics, translation to SCL.

Good calculus for dealing with continuations.

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

SLC: Syntax

A configuration is either 〈 e | c 〉 or 〈 e | f | c 〉, where:

expression e ::= ◦T | x | (e, e) | �f� | e ↑ f
function f ::= g | x ⇒ e | (x1, x2) ⇒ e | �g� ⇒ e | e

h | c ⇐ y | c ⇐ (y1, y2) | c ⇐ 
h� | c
continuation c ::= •T | y | (c, c) | 
f� | f ↓ c

Example: 〈 1 ↑ x1 ⇒ x1 + 2 ↑ x2 ⇒ x2 ∗ 4 | •int 〉
� 〈 1 ↑ x1 ⇒ x1 + 2 | x2 ⇒ x2 ∗ 4 | •int 〉
� 〈 1 ↑ x1 ⇒ x1 + 2 | x2 ⇒ x2 ∗ 4 ↓ •int 〉
� 〈 1 | x1 ⇒ x1 + 2 | x2 ⇒ x2 ∗ 4 ↓ •int 〉
� 〈 1 + 2 | x2 ⇒ x2 ∗ 4 ↓ •int 〉
� 〈 3 | x2 ⇒ x2 ∗ 4 ↓ •int 〉
� 〈 3 | x2 ⇒ x2 ∗ 4 | •int 〉
�

∗ 〈 12 | •int 〉

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)
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Reduction rules (non-deterministic)

(pop) 〈 e ↑ f | c 〉 � 〈 e | f | c 〉
(push) 〈 e | f | c 〉 � 〈 e | f ↓ c 〉
(left) 〈 (e1, e2) | c 〉 � 〈 e1 | x1 ⇒ (x1, e2) | c 〉

(right) 〈 (e1, e2) | c 〉 � 〈 e2 | x2 ⇒ (e1, x2) | c 〉
(exc) 〈 e | e′ | c 〉 � 〈 e′ | �g� ⇒ e ↑ g | c 〉

(β) 〈 e | x ⇒ e′ | c 〉 � 〈 e′[e/x] | c 〉
(βp) 〈 (e1, e2) | (x1, x2) ⇒ e′ | c 〉 � 〈 e′[e1/x1, e2/x2] | c 〉
(βf ) 〈 �f� | �g� ⇒ e′ | c 〉 � 〈 e′[f/g] | c 〉

(βf ) 〈 e | c′ ⇐ 
h� | 
f� 〉 � 〈 e | c′[f/h] 〉

(βp) 〈 e | c′ ⇐ (y1, y2) | (c1, c2) 〉 � 〈 e | c′[c1/y1, c2/y2] 〉

(β) 〈 e | c′ ⇐ y | c 〉 � 〈 e | c′[c/y] 〉
(exc) 〈 e | c′ | c 〉 � 〈 e | h ↓ c ⇐ 
h� | c′ 〉

(right) 〈 e | (c1, c2) 〉 � 〈 e | (c1, y2) ⇐ y2 | c2 〉

(left) 〈 e | (c1, c2) 〉 � 〈 e | (y1, c2) ⇐ y1 | c1 〉

(push) 〈 e | f | c 〉 � 〈 e ↑ f | c 〉
(pop) 〈 e | f ↓ c 〉 � 〈 e | f | c 〉

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
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Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

Denotational Semantics (CBV)

E[[x]]ρκ = let val(v) = ρ x in κ v
E[[(E1, E2)]]ρκ = E[[E1]] ρ (λv1.E[[E2]] ρ (λv2.κ (pair(v1, v2))))

E[[F ↑ E]]ρκ = E[[E]] ρ (λv.F[[F ]]ρvκ)
E[[�F �]]ρκ = κ (closr(λvc.F[[F ]]ρvc))

C[[y]]ρv = let cnt(κ) = ρ y in κ v
C[[{C1, C2}]]ρv = case v of in1(t) C[[C1]]ρt | in2(t) C[[C2]]ρt

C[[F ↓ C]]ρv = F[[F ]] ρ v (λt.C[[C]]ρt)
C[[
F �]]ρv = let contx(a, c) = v in F[[F ]]ρac

F[[X ⇒ E]]ρvκ = E[[E]] ([X [[X]] �→ v]ρ) κ
F[[Y ⇐ C]]ρvκ = C[[C]] ([Y[[Y ]] �→ κ]ρ) v

F[[E]]ρvκ = E[[E]] ρ (λt.let closr(f) = t in f v κ)
F[[C]]ρvκ = C[[C]] ρ (contx(v, κ))

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

Two Semantics

Denotational Semantics

Small-Step Semantics

Are they the same? — Yes (...well, almost).

We can connect them via

functional correspondence [Danvy].
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Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)
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Functional Correspondence

Interpreter (big-step semantics)

⇓ CPS transformation

CPS interpreter

⇓ Defunctionalization

Abstract machine (small-step semantics)

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

Functional Correspondence of SLC

CBV DS CBN DS

⇓ ⇓

CBV SSS → ND SSS ← CBN SSS

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

Subtle Point: CBN pair destruction

In Haskell:

f (x, y) = 0 // refutable pattern

g ~(x, y) = 0 // irrefutable pattern

*Main> undefined

*** Exception: Prelude.undefined

*Main> f undefined

*** Exception: Prelude.undefined

*Main> g undefined

0

*Main>

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)
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Subtle Point: CBN pair destruction

〈 e | (x1, x2) ⇒ e′ | c 〉

Should we evaluate e to a pair?

〈 e | (x1, x2) ⇒ e′ | c 〉 � 〈 e | [(x1, x2) ⇒ e′ ↓ c] 〉
〈 (e1, e2) | [(x1, x2) ⇒ e′ ↓ c] 〉 � 〈 e′[ei/xi] | c 〉

Should we bind xi to [e ↑ πi]?

〈 e | (x1, x2) ⇒ e′ | c 〉 � 〈 e′[[e ↑ πi]/xi] | c 〉
〈 [e ↑ πi] | c 〉 � 〈 e | [πi ↓ c] 〉

Kenichi Asai joint work with Yayoi Ueda Ochanomizu University (Tokyo, Japan)

Functional Derivation of Small-Step Semantics for Symmetric Lambda Calculus (SLC)

Summary

Small-step semantics for SLC is shown.

Its CBV/CBN variants coincide with the original
CBV/CBN denotational semantics.

The original SLC uses irrefutable patterns.

Relationship to other calculi?
(λµµ̃-calculus, Dual calculus, etc.)

Delimited continuations?
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Evaluator for a Recursive Flowchart Language

Robert Glück

DIKU, Department of Computer Science, University of Copenhagen,
DK-2100 Copenhagen, Denmark

Summary

We describe the design and implementation of a self-applicable online partial
evaluator for a flowchart language with recursive calls. Self-application of the
online partial evaluator converts interpreters into compilers and produces an
online compiler generator, all of which are as efficient as those known from the
offline partial evaluation literature (e.g., [1, 6, 8–11]). This result is remarkable
because it is assumed that online techniques unavoidably lead to inefficient and
overgeneralized program generators [8]. The online partial evaluator does not
require partial evaluation techniques that are stronger than those already known.
Instead it requires a reorganization of the algorithm to achieve successful self-
application according to all three Futamura projections [4].

Offline partial evaluation was invented in 1984 [9] specifically to solve the
problem of self-application and to perform all three Futamura projections. Even
though the first partial evaluators were all online and in spite of a number of at-
tempts during the last decades, the self-application of an online partial evaluator
has been an open question. The purpose of this investigation is not to determine
which line of partial evaluation is better, but to show how the problem can be
solved. The solution sought is a specialization algorithm that is (i) complete,
(ii) purely online, that is, without binding-time analysis prior to specialization,
and (iii) fully self-applicable in that all three Futamura projections yield efficient
residual programs (e.g., compilers, compiler generators). The online partial eva-
luator that we developed satisfies all three criteria.

The offline partial evaluator mix for a flowchart language described by Go-
mard and Jones [6] is well suited as a reference for our online partial evaluator
because mix does not follow the local binding-time annotations of a subject pro-
gram, but instead bases its specialization decisions on a fixed global division of
the program variables into static and dynamic, this division being precomputed
by a monovariant binding-time analysis. An important advantage of using a
flowchart language is that partial evaluation for flowchart languages is very well
documented in the literature (e.g., [2, 3, 6–8]), which should make our results
easily accessible and comparable. Flowchart languages also represent the core of
many realistic imperative languages.

Our online partial evaluator presented differs from mix in two important ways:

(1) the division of program variables is maintained as an updatable set of variable
names at specialization time, and
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(2) recursive polyvariant specialization is performed instead of the traditional
iterative version using an accumulating parameter (the pending list) [5].

Although the design of the self-applicable online partial evaluator is based on a
number of known techniques, by combining them in a new way this synergetic
effect can be produced.

Successful self-application of the online partial evaluator according to all
three Futamura projections is demonstrated, amongst other things, by convert-
ing an interpreter for Turing machines into a compiler, an Ackermann program
into a generating extension, and the partial evaluator itself into an online com-
piler generator. Self-application of the online partial evaluator can yield gener-
ating extensions that are more optimizing than those produced by the offline
partial evaluator mix. The generating extension of the Ackermann program for
example can precompute the function, thereby producing more optimized resi-
dual programs.

We believe that the online partial evaluator for the flowchart language pre-
sented here provides the clearest solution to date.
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Overview

Reversible Turing machines

Universality for RTMs

A first principles URTM

2

Turing machines

Definition (Turing machine)

A TM T is a tuple (Q,Σ, δ ,b, qs , qf ) where Q is a finite set of
states, Σ is a finite set of tape symbols, b ∈ Σ is the blank symbol,

δ ⊆ (Q × [(Σ× Σ) ∪{← , ↓,→}]× Q)

is a partial relation defining the transition relation, qs ∈ Q is the
starting state, and qf ∈ Q is the final state. There must be no
transitions leading out of qf nor into qs .

3
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Triple format for transition rules

δ ⊆ (Q × [(Σ× Σ) ∪{← , ↓,→}]× Q)

The form of a triple format rule in δ is either:

a symbol rule (q, (s, s ′), q′) where s, s ′ ∈ Σ, or
a move rule (q, d , q′) where d ∈{← , ↓,→}.

(Triples can be converted to the usual quintuples, and vice versa.
We use it for convenience.)

4

Reversible Turing machines (RTMs)

Intuition: RTMs are those where each configuration has a unique
successor and predecessor configuration.

Definition (Reversible Turing machine)

A TM T is reversible iff it is (locally) forward and backward
deterministic.

5

Local forward/backward determinism

Definition (Local forward determinism)

A TM T is local forward deterministic iff for any distinct pair of
triples (q1, a1, q′1) ∈ δ and (q2, a2, q′2) ∈ δ, if q1 = q2 then
a1 = (s1, s ′1) and a2 = (s2, s ′2), and s1 (= s2.

Definition (Local backward determinism)

A TM T is local backward deterministic iff for any distinct pair of
triples (q1, a1, q′1) ∈ δ and (q2, a2, q′2) ∈ δ, if q′1 = q′2 then
a1 = (s1, s ′1) and a2 = (s2, s ′2), and s ′1 (= s ′2.

6
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Local backward determinism: Examples

(q, (a, b), p) and (q, (a, c), p) respects bwd determinism.

(q, (a, b), p) and (r, (c, b), p) breaks bwd determinism.

(q, (a, b), p) and (r,→, p) breaks bwd determinism.

7

RTM computability

Some important results:

RTMs compute injective functions, only.

All injective computable function are computable with RTMs.

1-tape, 3-symbol RTMs are sufficient.

RTMs can be easily inverted...

8

Classical universality

A universal TM U is defined as a self-interpreter for Turing
machines:

[[U]](!T", x) = [[T ]](x) .

Here, !T" ∈ Σ∗ is a Gödel number representing some TM T .

Problem: Does not work for RTMs - [[U]] is non-injective.

9
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RTM-universality

An RTM-universal TM UR is defined by

[[UR ]](!T", x) = (!T", [[T ]](x)) .

where !T" ∈ Σ∗ is a Gödel number representing some RTM T .

[[UR ]] is injective and computable ⇒ computable by some RTM.

10

Why a first-principles approach?

Previous approaches (Bennett, Morita) rely on reversible
simulations (“reversibilization”) of irreversible machines.
Asymptotically very costly: As much space as time!

The URTM we give has better complexity: (Program dependent)
constant factor slowdown, same space as interpreted program.
Theoretical basis for the robustness of reversible models.

11

URTM overview

Scope:

Interprets 1-tape, 3-symbol RTMs
(T = {Q, {b, 0, 1}, δ ,b, qs , qf }).

Structure:

Work tape: Identical to T ’s tape.

Program tape: Contains the program !T".
State tape: Encoding of T ’s internal state, qc .

12
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Program encoding !T"

A program is a string !T" over Σ= {b, 0, 1, B, S, M, #}. !T" lists
the rules δ of T , with qs rule first, qf rule last.

trans(q, (s, s ′), q′) = S#eQ(q)#eΣ(s)eΣ(s ′)#rev(eQ(q′))#S
trans(q, d , q′) = M#eQ(q)#eD(d)#rev(eQ(q′))#M

eQ : Q → {0,1}#log |Q|$ is an injective binary encoding of states.

eΣ(s) =

{
B if s = b

s otherwise
eD(d) =






10 if d =←
BB if d = ↓
01 if d =→

rev : Σ→ Σ reverses a string.

13

Program encoding, example

RTM T = ({q0, q1, q2, q3}, {b, 0, 1}, δ ,b, q0, q3)

δ = {(q0,→, q1), (q1, (0, 1), q2), (q1, (1, 0), q2), (q2,←, q3)}

!T" = M#00#01#10#MS#01#01#01#SS#01#10#01#SM#10#10#11#M

eQ is given as q0 *→ 00, q1 *→ 01, q2 *→ 10 and q3 *→ 11.

14

URTM program

halt

rewind program tape

clear qc = qfqc = qfrewind program tape·write qc = qs

start

· move rule

symbol rule

truefalse




α,α
b, b
#, #








α,α
M, M
#, #








↓
→
↓








α,α
S, S
#, #





Problem: Lots of irreversibilities in control flow.

15
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URTM program

halt

rewind program tape

clear qc = qfqc = qfrewind program tape·write qc = qs

start

move rule

symbol rule

truefalse




α,α
b, b
#, #








α,α
b, b
#, #








α,α
M, M
#, #








α,α
M, M
#, #








↓
→
↓








α,α
S, S
#, #








α,α
S, S
#, #





Use enclosing S,M to join paths after rule tests.

16

URTM program

halt

rewind program tape

clear qc = qfqc = qfrewind program tapeqc = qswrite qc = qs

start

move rule

symbol rule

truetrue false false




α,α
b, b
#, #








α,α
b, b
#, #








α,α
M, M
#, #








α,α
M, M
#, #








↓
→
↓








α,α
S, S
#, #








α,α
S, S
#, #





Works because qs is only visited once.

17

String comparison

A key functionality we need to implement is string comparison.

Assume a 2-tape structure

#s1 · · · sn#
#t1 · · · tn#

with tape heads on the leftmost #.

From internal state q, we want to pass over the strings, ending in
internal state q= if the strings match, and in internal state q '= if
they don’t, with the tape heads in either case on the rightmost #.

18
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Irreversible string comparison of
#s1 · · · sn#
#t1 · · · tn#

pstart =

q'=

[
→
→

]

[
α,α
α,α

]
, α '= #

[
#, #
#, #

]

[
α,α
β,β

]
, α '= β[

→
→

]

[
α,α
β,β

]
, α , β '= #

[
#, #
#, #

]

Irreversibility at state q (and probably p).

19

Reversible string comparison of
#s1 · · · sn#
#t1 · · · tn#

start =

'=

[
#, #
#, #

] [
→
→

]

[
α,α
α,α

]
, α '= #

[
#, #
#, #

]

[
α,α
β,β

]
, α '= β[

←
←

]

[
α,α
α,α

]
, α '= #

[
#, #
#, #

][
→
→

]

[
α,α
β,β

]
, α , β '= #

[
#, #
#, #

]

20

Inverse string comparison of
#s1 · · · sn#
#t1 · · · tn#

= join

= start

'=start

[
#, #
#, #

] [
←
←

]

[
α,α
α,α

]
, α '= #

[
#, #
#, #

]

[
α,α
β,β

]
, α '= β[

→
→

]

[
α,α
α,α

]
, α '= #

[
#, #
#, #

][
←
←

]

[
α,α
β,β

]
, α , β '= #

[
#, #
#, #

]

21
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Testing a symbol rule (q, (s, s ′), q′)

qc = q

sc = s apply rule

·

t

f

f

t

Must resolve the join in control flow.

22

Testing a symbol rule (q, (s, s ′), q′)

qc = q

sc = s

qc = q

apply rule

·

t

f

f

f

t

t

This assertion works for all T . Still irreversible...

23

Testing a symbol rule (q, (s, s ′), q′)

qc = q

sc = s

qc = q

apply rule sc = s′

qc = q′

qc = q′

t

f

f

f

t

t t

t

f
t

f

f

Only possible because T is reversible!

24
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Bonus: Inverse interpretation

URTM can work as a (reversible) inverse interpreter with no extra
overhead. A reversible inverse interpreter is a program rinvint s.t.

[[rinvint]](p, y) = (p, x) i ff[[p]](x) = y

We intentionally designed the program encoding s.t.

rev(!T") = !T−1"

Let R perform this string reversal. (Time linear in size of !T".)

[[R ◦ U ◦ R]] (!T", y) = (!T", [[T−1]](x))

25

Conclusion

First URTM with

Only constant factor slowdown (proportional to length(!T").)
No space overhead (unlike all previous approaches.)

Inverse interpretation for free.

The RTMs can thus simulate themselves efficiently.

References:
H. B. Axelsen and R. Glück: What do reversible programs compute? FOSSACS
2011, LNCS 6604, pp. 42–56, Springer, 2011.
H. B. Axelsen and R. Glück: A Simple and Efficient Universal Reversible Turing
Machine. LATA 2011. To appear.
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Programming Language Coroutine Application Translation Conclusion

Reversible Computing

a += b

NEG  $3

XORI $3 42
BRA −6

XORI $3 42

BRA  6

ADD  $2 $3

SWBR $1

A
B
C

P
Q
R

Fourier transform
g(x,y) = (x, x+y)

f(x) = x3
procedure
if a < b
then

update_a

else
a −= b * 2 + c
call

fi
uncall

update_b

a > b
update_b

architecture

Algorithms

High−level

Machine code

Implementation
Physical

Gate level

languages

Computer
PC

ALU MEM

BR
UPDBR

DIR
UPD
PC

REGS
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Programming Language Coroutine Application Translation Conclusion

Motivation

Current reversible programming languages have few program
constructs because of the constraints posed by reversibility.

We show how this expressiveness can be greatly extended by adding a
coroutine construct without losing reversibility.

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 3/19
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Programming Language Coroutine Application Translation Conclusion

Reversible Programming Language

Characteristics
• Forward and backward deterministic
• Reversible update of variables x += e
• Local inversion
• Control flow operators require assertions

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 4/19

Programming Language Coroutine Application Translation Conclusion

Reversible Programming Language

Reversible Structured Control Flow

(a) Conditional (b) Loop

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 5/19

Programming Language Coroutine Application Translation Conclusion

Janus Programming Language

Example (Fibonacci pair)

procedure main
x1 += 3
x2 += 5
uncall fib

procedure fib
x1 += 1
x2 += 1
from x1 = x2
do n -= 1
loop x1 += x2

x1 <=> x2
until n = 0

n x1 x2
0 3 5
4 0 0

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 6/19
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Programming Language Coroutine Application Translation Conclusion

Janus Programming Language

Abstract Syntax

prog ::= (x[c])∗ p+

p ::= procedure id s+

s ::= x += e | x -= e | x <=> x |
if e then s∗ else s∗ fi e |
from e do s∗ loop s∗ until e |
call id | uncall id

e ::= c | x | e ⊗ e

⊗ ::= + | - | * | / | · · ·

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 7/19

Programming Language Coroutine Application Translation Conclusion

Reversible Coroutine

Motivation for looking at reversible coroutine
• Coroutines are well-suited for defining

• Cooperative tasks
• Iterators
• Generators
• Infinite lists
• Pipes

• Only reversible subroutine exist
• Gain expressiveness in a disciplined way

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 8/19

Programming Language Coroutine Application Translation Conclusion

Reversible Coroutines in Janus

Example (Fibonacci pair generator w/ coroutine)

procedure main
n += 2
call fibco
call fibco
uncall fibco

coroutine fibco
x1 += 1
x2 += 1
from x1 = x2
do n -= 1
loop yield

x1 += x2
x1 <=> x2

until n = 0

n x1 x2
2 0 0
2 1 1
1 1 1
1 1 2
0 1 2
1 1 2
1 1 1

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 9/19
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Programming Language Coroutine Application Translation Conclusion

Application

Application of reversible coroutines
• Are coroutines well-suited for defining program components?

• Generators
• Iterators
• Cooperative tasks
• Pipes

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 10/19

Programming Language Coroutine Application Translation Conclusion

Reversible Pipeline using Coroutine

Example (Unix Pipe)
cat code | unzip | bcount | zip > code’

Pipeline implementation
• Communicate through circular buffer
• Define coroutines zip, unzip and bcount and methodology for

communicating with pipes
• Pipeline scheduler linking the coroutines

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 11/19

Programming Language Coroutine Application Translation Conclusion

Pipeline Implementation

Pipe Coroutines Methodology

coroutine proc(IN, OUT)
from empty(OUT)
do yield
loop get(IN) <=> in

body
put(OUT) <=> out

until empty(IN)

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 12/19
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Programming Language Coroutine Application Translation Conclusion

Pipeline Implementation

procedure p i p e l i n e
/ / . . . i n i t i a l i z e b u f f e r code . . .
c a l l unz ip ( a , b )
c a l l bcoun t ( b , c )
c a l l z i p ( c , d )
from empty ( b ) && empty ( c ) && empty ( d )
do c a l l unz ip ( a , b )

c a l l bcoun t ( b , c )
c a l l z i p ( c , d )

un t i l empty ( a ) && empty ( b ) && empty ( c )
c a l l bcoun t ( b , c )
c a l l z i p ( c , d )

co rou t i n e bcoun t ( in , o u t )
from empty ( o u t )
do y i e l d
loop from empty ( o u t )

do ge t ( i n ) <=> c h r
i f c h r = ’ b ’
then coun t += 1
f i c h r = ’ b ’
put ( o u t ) <=> c h r

un t i l empty ( i n )
un t i l empty ( i n )
put ( o u t ) <=> coun t

co rou t i n e unz ip ( in , o u t )
from empty ( o u t )
do y i e l d
loop g e t ( i n ) <=> code

ge t ( i n ) <=> l e n g t h
from ppeek ( o u t ) != code | | empty ( o u t )
do l e n g t h −= 1
l oop put ( o u t ) ^= code
un t i l l e n g t h = 0
put ( o u t ) <=> code

un t i l empty ( i n )

co rou t i n e z i p ( in , o u t )
from empty ( o u t )
do y i e l d
loop g e t ( i n ) <=> code

from l e n g t h = 0
do l e n g t h += 1
l oop g e t ( i n ) ^= code
un t i l gpeek ( i n ) != code | | empty ( i n )
put ( o u t ) <=> code
put ( o u t ) <=> l e n g t h

un t i l empty ( i n )

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 13/19

Programming Language Coroutine Application Translation Conclusion

Translation

Translation to a Reversible Instruction Set Architecture
• Preserve reversibility properties of the language
• Exploit reversibility properties of the low-level language
• Gain properties of an implementation in reversible hardware, i.e.,

lower heat dissipation

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 14/19

Programming Language Coroutine Application Translation Conclusion

Translation

Reversible Coroutine Translation Challenges
• Granularity is finer
• Control flow
• Coroutine state
• Clean translation (i.e., w/o trace data)

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 15/19
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Programming Language Coroutine Application Translation Conclusion

Coroutine Translation

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 16/19

Programming Language Coroutine Application Translation Conclusion

Coroutine Translation

coroutine fibco
x1 += 1
x2 += 1
from x1 = x2
do n -= 1
loop yield

x1 += x2
x1 <=> x2

untiln = 0

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 17/19

Programming Language Coroutine Application Translation Conclusion

Conclusion

• Coroutines are a powerful way of gaining expressiveness in a
disciplined way

• First step: Generator, pipeline and cooperative processes
• Adds first stateful construct in reversible languages
• Clean translation scheme

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 18/19
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Programming Language Coroutine Application Translation Conclusion

Future Work

• Expressive powers of coroutines need to be examined further,
i.e., defining cooperative tasks and state machines

• Generator and pipeline examples presented need to be refined
and generalized

• Refine coroutine notation to include, e.g., instances and local
variables

Poul J. Clementsen Reversible Coroutines DIKU-IST’11 19/19
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Monadic Effects in Operational Semantics
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Andrzej Filinski
andrzej@diku.dk
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4th DIKU-IST Workshop on Foundations of Software
January 10-14, Tokyo

Background and overview
Two common approaches to uniformly specifying effectful
operations in functional languages:

1 Monad of computations + pure definitions of operations
Translate client program using monad components, plug in
operation definitions, evaluate by core semantics
Typically used in Haskell-like settings

2 Stylized evaluation contexts + context-rewriting operations
Formalize context shapes, extend core semantics with new
rules for effectful operations
Typically used in ML/Scheme-like settings

This talk: generically obtaining (2) from (1)
... without giving up the monadic equational theory!

In paper: details for full multimonadic metalanguage
Here: for single effect only; expressed in Haskell subset
(slightly oversimplified)
There is a complementary story for ML-like settings2

Monadic Haskell with Int-carrying exceptions

t ::=

Core lang .︷ ︸︸ ︷
Int | t1 → t2 | Either t1 t2 | Mε t

ε ::= id | ex | · · ·
e ::= n | x | λx → e | e1 e2 | Left e | Right e

| case e0 of {Left x → e1; Right y → e2}

}
Core lang .

| returnε e | doε x ← e1; e2 | raise e | tryε e1 with x → e2

Typing judgmentΓ # e :: t . Usual rules for core constructs +

Γ # e :: t

Γ # returnε e :: Mε t

Γ # e1 :: Mε t1 Γ, x : t1 # e2 :: Mε t2
Γ # doε x ← e1; e2 :: Mε t2

Γ # e :: Int

Γ # raise e :: Mex t

Γ # e1 :: Mex t Γ, x : Int # e2 :: Mε t

Γ # tryε e1 with x → e2 :: Mε t

Superscripts ε on return, do, try added by overloading resolution.
3
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Specifying exceptions with a monad

Transparent/concrete definition of exception monad:

type Tex a = Either a Int -- not newtype

unitex :: a → Tex a
unitex a = Left a

bindex :: Tex a → (a → Tex b) → Tex b
bindex t f = case t of {Left a → f a; Right n → Right n}

Used to implement abstract effect of exceptions:

newtype Mε a = Reflectε (Tε a) Reflectε :: Tε a → Mε a
reifyε (Reflectε t) = t -- aka. runε reifyε :: Mε a → Tε a

returnε e = Reflectε (unitε e)
doε x ← e1; e2 = Reflectε (bindε (reifyε e1) (λx → reifyε e2))

raise e ≡ Reflectex (Right e) -- definitional abbrevs.
tryε e1 with x → e2 ≡

case reifyex e1 of {Left a → returnε a; Right x → e2}4

Standard (def.-unfolding) operational semantics
e ::= (core) | returnε e | doε x ← e1; e2 | Reflectε e | reifyε e

Reduction judgment e −→ e ′ for closed terms:

e1 −→ e′1
e1 e2 −→ e′1 e2 (λx → e1) e2 −→ e1[e2/x ]

e0 −→ e′0
case e0 of {· · · } −→ case e′0 of {· · · }

case Left e of {Left x1 → e1; Right x2 → e2} −→ e1[e/x ]
(+symm)

returnε e −→ Reflectε (unitε e)

doε x ← e1; e2 −→ Reflectε (bindε (reifyε e1) (λx → reifyε e2))
e −→ e′

reifyε e −→ reifyε e′ reifyε (Reflectε e) −→ e

Note: tags on returnε , doε play essential role in behavior.
Note: code for unitε, bindε traversed on every returnε, doε.

5

Equational theory

If (Tε , unitε, bindε) satisfy monad laws, get additional valid
reasoning principles for observational equivalence:

(λx → e1) e2 = e1[e2/x ]

λx → e x = e (x "∈FV (e))
...

doε x ← returnε e1; e2 = e2[e1/x ]

doε x ← e; returnε x = e

doε y ← (doε x ← e1; e2); e3 = doε x ← e1;doε y ← e2; e3 (x "∈FV (e3))

reifyε (returnε e) = unitε e

reifyε (doε x ← e1; e2) = bindε (reifyε e1) (λx → reifyε e2)

reifyε (Reflectε e) = e

Reflectε (reifyε e) = e

Can we operationalize these equations in a different way?
6
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New (effectful) operational semantics

e ::= (core) | return e | do x ← e1; e2 | reifyε e | do x ← Reflectε e1; e2

reflectε e ≡ do x ← Reflectε e; return x -- for convenience

e −→ e ′
(Unmodified rules for the core constructs)

e1 −→ e′1
do x ← e1; e2 −→ do x ← e′1; e2

do x ← return e1; e2 −→ e2[e1/x ]

do y ← (do x ← Reflectε e1; e2); e3
−→ do x ← Reflectε e1;do y ← e2; e3

(∗)

e −→ e′

reifyε e −→ reifyε e′ reifyε (return e) −→ unitε e

reifyε (do x ← Reflectε e1; e2) −→ bindε e1 (λx → reifyε e2)
(∗)

Note: no effect-tags needed on return, do.
(∗)-rules: connect Reflectε to nearest dynamically enclosing reifyε .7

Properties of reduction semantics

Sound: if e −→ e ′, then e = e ′ in equational theory.

Deterministic: if e −→ e ′ and e −→ e ′′, then e ′ ≡ e ′′.

Type-preserving: if · # e :: t and e −→ e ′, then · # e ′ :: t.

Non-sticking: if · # e :: t, then either e canonical, or
e −→ e ′ for some e ′. Canonical forms are:

Int︷︸︸︷
n |

t1→t2︷ ︸︸ ︷
λx → e |

Either t1 t2︷ ︸︸ ︷
Left e | Right e |

Mε t︷ ︸︸ ︷
return e | do x ← Reflectε e1; e2

Note: a canonical M-computation is either effect-free, or an
immediate effect invocation.

In particular, a closed term of type Int (but using monadic
effects internally) must eventually reduce to an n, or diverge.

8

Evaluation-context formulation of new semantics

General and restricted evaluation contexts:

E ::= [] | E e | case E of {· · · } | do x ← E ; e | reifyε E

F ::= [] | do x ← F ; e (in particular, no reifyε F )

Bigger-step judgment e −→→ e ′ :

e −→→ e ′

E [e] −→→ E [e ′] (λx → e1) e2 −→→ e1[e2/x ]

case Left e of {Left x1 → e1; Right x2 → e2} −→→ e1[e/x ]
(+symm)

do x ← return e1; e2 −→→ e2[e1/x ] reifyε (return e) −→→ unitε e

reifyε (F [reflectε e]) −→→ bindε e (λx → reifyε (F [return x ]))
(∗)

Sound: if e −→→ e ′ then e −→+ e ′.
9
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Example: exceptions (again)
Recall definitions of exception monad and operations:

Tex a = Either a Int; unitex a = Left a; bindex = · · ·
raise e ≡ reflectex (Right e)

try e1 with x → e2 ≡
case reifyex e1 of {Left a → return a; Right x → e2}

Gives derivable typing and reduction rules:

Γ # e :: Int

Γ # raise e :: Mex t

Γ # e1 :: Mex t Γ, x : Int # e2 :: Mε t

Γ # try e1 with x → e2 :: Mε t

e1 −→ e ′1
try e1 with x → e2 −→ try e ′1 with x → e2

try return e0 with x → e2 −→+ return e0

try F [raise e0] with x → e2 −→+ e2[e0/x ]
10

Example: state
Standard definitions of state monad and operations:

Tst a = Int → (a, Int); unitst a = λs → (a, s); bindst = · · ·

getst ≡ reflectst (λs → (s, s))

setst e ≡ reflectst (λs → ((), e))

withst e1 do e2 ≡ let (a, s ′) = (reifyst e2) e1 in a
-- run e2 in initial state e1

Derived typing and reduction rules:

Γ # getst :: Mst Int

Γ # e :: Int

Γ # setst e :: Mst ()

Γ # e1 :: IntΓ # e2 :: Mst t

Γ # withst e1 do e2 :: t

e2 −→ e′2
withst e1 do e2 −→ withst e1 do e′2 withst e1 do return e2 −→+ e2

withst e do F [getst] −→+ withst e do F [return e]

withst e do F [setst e′] −→+ withst e′ do F [return ()]11

Summary
Monadic definitions of effects can be given direct operational
interpretation. Curry-style type system: don’t need to
reconstruct types before evaluation.

Rational reconstruction of evaluation-context semantics.
Related construction: taking implementation type Mε a to be a
delimited-continuations monad ∀o.(a → Tε o) → Tε o.

⇒ embedding arbitrary monadic effects in Scheme.

In paper:
Full core language with product, sum, function, recursive, and
generalized-effect types; effect-subtyping.

Explicit syntax for effect definitions with layering.

Precise formulation of semantics (explicit and context-based),
type system, type soundness – all mechanized in Twelf.

Current work: correspondence between (domain-theoretic)
denotational and operational semantics for monadic effects.

12
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Report on using
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Department of Computer Science
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4th DIKU-IST Workshop

Probability Monad

• Our offset is the formulation by Erwig and 
Kollmansberger (2006)

• That probability distributions form a monad 
is not new Giry (1981)

Probability Monad in Haskell

type Probability = Float
newtype Dist a = D {unD::[(a,Probability)]}

instance Monad Dist where
  return x = D[(x, 1.0)]
  dist >>= f = dist `bind` f

bind :: Dist a -> (a -> Dist b) -> Dist b
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Constructing Distributions

weightedCases::[(a, Probability)] -> Dist a
countedCases :: [(a, Int)] -> Dist a
uniform :: [a] -> Dist a

Example: Some Dice

die = uniform [1..6]

twoDice = do
    n1 <- die

n2 <- die
return (n1+n2)

Example: Traffic Light

data Light = Red | Green | Yellow
                    
stopLight :: Dist Light
stopLight = 
   countedCases[(Red,    50)
               ,(Yellow, 10)
               ,(Green,  40)]

59



Example: Driver Behavior
data Action = Stop | Drive

cautious :: Light -> Dist Action

cautious Red    = return Stop
cautious Green  = return Drive

cautious Yellow = countedCases[(Stop,9),(Drive,1)]

aggressive :: Light -> Dist Action
aggressive Red    = countedCases[(Stop,9),(Drive,1)]

aggressive Yellow = countedCases[(Stop,1),(Drive,9)]
aggressive Green  = return Drive

Implementing bind

bind :: Dist a -> (a -> Dist b) -> Dist b
bind (D d) cond =
  D [(y, p*q) | (x, p) <- d
              , (y, q) <- unD (cond x)]

We Got a Problem
[(2,2.777778e-2),(3,2.777778e-2),(4,2.777778e-2),

(5,2.777778e-2),(6,2.777778e-2),(7,2.777778e-2),
(3,2.777778e-2),(4,2.777778e-2),(5,2.777778e-2),

(6,2.777778e-2),(7,2.777778e-2),(8,2.777778e-2),
(4,2.777778e-2),(5,2.777778e-2),(6,2.777778e-2),

(7,2.777778e-2),(8,2.777778e-2),(9,2.777778e-2),
(5,2.777778e-2),(6,2.777778e-2),(7,2.777778e-2),

(8,2.777778e-2),(9,2.777778e-2),(10,2.777778e-2),
(6,2.777778e-2),(7,2.777778e-2),(8,2.777778e-2),

(9,2.777778e-2),(10,2.777778e-2),(11,2.777778e-2),
(7,2.777778e-2),(8,2.777778e-2),(9,2.777778e-2),

(10,2.777778e-2),(11,2.777778e-2),(12,2.777778e-2)]

> unD twoDice
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Let’s Fix it

bind (D d) cond = D d'

  where 
    raw = [(y, p*q) | (x, p) <- d

                    , (y, q) <- unD (cond x)]
    sorted = sortBy (\(x,p)(y,q) -> compare x y) raw

    grouped = groupBy (\(x,p)(y,q) -> x==y) sorted
    d' = map (\g -> (fst$ head g, sum$ map snd g)) 

             grouped

We Got an Other Problem
Could not deduce (Ord b) from the context ()

      arising from a use of `bind'
    Possible fix:

      add (Ord b) to the context of the type 
      signature for `>>='

    In the expression: bind dist f
    In the definition of `>>=': dist >>= f = bind 

dist f
    In the instance declaration for `Monad Dist'

Using RMonad 
data instance Constraints Dist a = 
         Ord a => DistC
instance Ord a => Suitable Dist a where
  constraints = DistC

instance RMonad Dist where
  return  x = D[(x, 1)]
  d >>= k   = Suitable.withResConstraints $ 
              \DistC -> d `bind` k
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Generic Multiset 
Discrimination

• We can also use Henglein’s library for 
Generic multiset discrimination

• Key ingredient: generic symbolic equality 
relations

• Key function (for this talk):
part :: Equiv t -> [t] -> [[t]]

GMSD With RMonad
class Eqv t where
 equiv :: Equiv t

data instance Constraints Dist a = 
   Eqv a => DistC
instance Eqv a => Suitable Dist a where
  constraints = DistC

instance RMonad Dist where
  return  x = D[Pr x 1]
  d >>= k   = Suitable.withResConstraints $ 
              \DistC -> d `bind` k

bind with GMSD
bind :: Eqv a =>
        Dist t -> (t -> Dist a) -> Dist a

bind (D d) cond = D flattened
  where 
     raw = [Pr y (p*q) | Pr x p <- d
                       , Pr y q <- unD (cond x)]
     grouped = Disc.part equiv raw
     flattened = [Pr (pfst$ head p) 
                     (sum$ map psnd p) 
                 | p <- grouped]
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Near-future Work

• Performance evaluation

• Simulation framework

• Example from biology

• Tree grows

• Predator/Prey models

Future Work

• Monte Carlo simulation

• Examples from finance

Distant-future Work

• Symbolic representation of distributions

• Perhaps extend beyond finite discrete 
distributions

• Parallel execution of simulations
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A Trace-based Model for Multi-Party Contracts1

Tom Hvitved
hvitved@diku.dk

DIKU-IST Workshop 2011
January 11, 2011

1Joint work with Felix Klaedtke and Eugen Zălinescu

Background

Multi-party contract: legally binding agreement between
individuals or companies that describes the commitments of
each contract participant.

For enterprises: contracts serve as the external interface to
their clients. Consequently crucial to monitor execution of
contracts for breaches, and to comply with them.

Aberdeen Group studies: “the average savings of transactions
that are compliant with contracts is 22%”.

3

Example

Paragraph 1. Seller agrees to transfer and deliver to Buyer, on or before
2011-01-01, the goods: 1 laser printer.

Paragraph 2. Buyer agrees to accept the goods and pay a total of e200 for
them according to the terms further set out below.

Paragraph 3. Buyer agrees to pay for the goods half upon receipt, with the
remainder due within 30 days of delivery.

Paragraph 4. If Buyer fails to pay the second half within 30 days, an additional
fine of 10% has to be paid within 14 days.

Paragraph 5. Upon receipt, Buyer has 14 days to return the goods to Seller in
original, unopened packaging. Within 7 days thereafter, Seller has to repay the
total amount to Buyer.

4
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Trace-based Contract Model

Abstract model for contracts.

Contracts are driven by events.

Depending on the sequence of events, the outcome of a
contract can either be fulfillment or non-fulfillment.

Such outcome may be suggestive of an obligation or a
deadline not being met—but the model does not rely on such
high-level notions.

(Deterministic) blame assignment.

Fundamental breaches: first breach matters.

Compositionality (contract conjunction, contract disjunction).

5

Definitions (I)

P: contract parties, A: actions, Ts: timestamps (for
simplicity, Ts := N).

Event: ε = (τ, α), where τ ∈ Ts, α ∈ A.

ts((τ, α)) := τ .

Trace: finite or infinite sequence of events that satisfies the
following properties:

(1) timestamps are non-decreasing, that is, ts(σ[i ]) ≤ ts(σ[j ]), for
all integers i , j ∈ N with 0 ≤ i ≤ j < |σ|.

(2) infinite traces have progress, that is, if |σ| = ∞ then for all
timestamps τ ∈ Ts, there is an integer i ∈ N such that
ts(σ[i ]) ≥ τ .

Example: (2011-01-01, delivery)(2011-01-01, payment).

6

Definitions (II)

Intuitively: contract is a subset of traces.

BUT: we generalize the traditional binary outcome to
incorporate blame assignment.

Verdicts: V := {�} ∪ {(τ,B) | τ ∈ Ts and B ⊆fin P}.

Contract conformance, �, is not associated with a point in
time.

Require that all breaches be associated with a finite point in
time.

|B | > 1: simultaneous breach, e.g., a barter deal.

7
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Definitions (III)

A contract between parties P ⊆fin P: a function c : Tr → V,
where

if c(σ) = (τ,B) then B ⊆ P ,

if c(σ) = (τ,B) then c(σ′) = (τ,B), for all σ′ ∈ Tr with στ = σ′
τ .

(στ is restriction of σ to events with time stamp at most τ .)

Contracts are deterministic.

Traces are considered complete. Do not model: origin of
events, agreement of events.

Result: Verdict on infinite traces uniquely determined from
verdicts on finite traces (contract conformance is a safety
property).

8

Example

Paragraph 1 as a contract, c1 : Tr → V between {Seller}:

c1(σ) :=




� if σ[i ] = (τ, delivery),

for some 0 ≤ i < |σ| and τ ≤ τd ,(
τd , {Seller}

)
otherwise.

τd := 2011-01-01.

c1(ε) = (2011-01-01, {Seller}).

c1((2011-01-01, delivery)) = �.

9

Contract Conjunction

Present in virtually all contracts.

Assume νi is verdict of ci , i = 1, 2.

Combined verdict:

ν1 ∧ ν2 :=




� if ν1 = ν2 = �,
ν1 if either ν2 = �,

or ν1 = (τ1,B1), ν2 = (τ2,B2), and τ1 < τ2,
ν2 if either ν1 = �,

or ν1 = (τ1,B1), ν2 = (τ2,B2), and τ1 > τ2,
(τ,B) if ν1 = (τ,B1), ν2 = (τ,B2), and B = B1 ∪ B2.

(Fundamental breaches.)

(c1 ∧ c2)(σ) := c1(σ) ∧ c2(σ).

Result: c1 (c2) contract between parties P1 (P2) then c1 ∧ c2
contract between parties P1 ∪ P2.

10
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Contract Disjunction

Assume νi is verdict of ci , i = 1, 2, and that if ν1 = (τ,B1)
and ν2 = (τ,B2) then B1 = B2 (deterministic blame
assignment).

Combined verdict:

ν1 ∨ ν2 :=




� if ν1 = � or ν2 = �,
(τ1,B1) if ν1 = (τ1,B1), ν2 = (τ2,B2) and τ1 > τ2,
(τ2,B2) if ν1 = (τ1,B1), ν2 = (τ2,B2) and τ1 < τ2,
(τ,B) if ν1 = ν2 = (τ,B).

Inherently non-deterministic operator.

(c1 ∨ c2)(σ) := c1(σ) ∨ c2(σ).

Result: c1 (c2) contract between parties P1 (P2) then c1 ∨ c2
contract between parties P1 ∪ P2.

11

Contract Composition

(C ,∨,∧) is a distributive lattice with unit element c�,
provided unique blame assignment.

ν1 ∧ ν2 = ν2 ∧ ν1 (Commutativity)

ν ′1 ∨ ν ′2 = ν ′2 ∨ ν ′1 (Commutativity)

ν1 ∧ (ν2 ∧ ν3) = (ν1 ∧ ν2) ∧ ν3 (Associativity)

ν ′1 ∨ (ν ′2 ∨ ν ′3) = (ν ′1 ∨ ν ′2) ∨ ν ′3 (Associativity)

ν ′1 ∨ (ν ′1 ∧ ν ′2) = ν ′1 (Absorption)

ν ′1 ∧ (ν ′1 ∨ ν ′2) = ν ′1 (Absorption)

ν ′1 ∨ (ν ′2 ∧ ν ′3) = (ν ′1 ∨ ν ′2) ∧ (ν ′1 ∨ ν ′3) (Distributivity)

ν1 ∧ (ν ′2 ∨ ν ′3) = (ν1 ∧ ν ′2) ∨ (ν1 ∧ ν ′3) (Distributivity)

� ∧ ν = ν ∧ � = ν (Unit)

� ∨ ν = ν ∨ � = � (Unit)

12

Run-time Monitoring

Run-time monitor: partial, finite traces. Most be computable.

Many-valued semantics: V� := {ν� | ν ∈ V}, � ∈ {!, ?}.

mon : Trfin → V! ∪ V? that satisfies

mon(σ) =




�! if c(σ′) = � whenever σ � σ′,
(τ,B)! if c(σ′) = (τ,B) whenever σ � σ′,
�? if c(σ) = � and c(σ′) �= � for some σ � σ′,
(τ,B)? if c(σ) = (τ,B) and c(σ′) �= (τ,B) for some σ � σ′.

Impartiality and anticipation.

Previous example:
mon(ε) = (2011-01-01, Seller)?.

mon((2011-01-01, delivery)) = �!.

mon((2011-01-02, delivery)) = (2011-01-01, Seller)!.

13
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A Contract Specification Language

Writing contracts directly in the abstract model is
cumbersome.

CSL provides syntax for writing contracts.

CSL specifications denote contracts via a reduction semantics
⇒ deterministic blame assignment + compositionality.

CSL supports (a) history sensitive contracts, (b) conditional
commitments, (c) contract templates, (d) absolute and
relative temporal constraints, (e) reparation clauses, (f)
in-place arithmetic, and (g) potentially infinite contracts.

14

A Contract Specification Language
Signature: S = (K, ar, T ), ar : K → T ∗.

Actions refined:
A := {k(�v) | k ∈ K, ar(k) = (t1, . . . , tn), �v ∈ �t1�×· · ·×�tn�}.

Syntax:

s ::= letrec {fi (�xi )〈�yi 〉 = ci}ni=1 in c starting e

c ::= fulfillment

| 〈e1〉 k(�x) where e2 due d remaining z then c

| if k(�x) where e due d remaining z then c1 else c2

| if e then c1 else c2

| c1 and c2

| c1 or c2

| f (�e1)〈�e2〉
e ::= x | v | ¬e | e1 � e2 | e1 ≺ e2

d ::= after e1 within e2
15

Example, revisited
letrec sale(deliveryDeadline, goods, payment)〈buyer, seller〉 =
〈seller〉 Deliver(s,r,g) where s = seller ∧ r = buyer ∧ g = goods

due within deliveryDeadline
then
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = payment/2

due immediately
then
((〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧ a = payment/2

due within 30D
or
〈buyer〉 Payment(s,r,a) where s = buyer ∧ r = seller ∧

a = (payment/2) ∗ 110/100
due within 14D after 30D)

and
if Return(s,r,g) where s = buyer ∧ r = seller ∧ g = goods due within 14D then
〈seller〉 Payment(s,r,a) where s = seller ∧ r = buyer ∧ a = payment

due within 7D)
in
sale(0, "Laser printer", 200)〈Buyer, Seller〉 starting 2011−01−01

16
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Some Notes on Semantics (I)

Type system:

∆: template environment, Λ: party environment, Γ: variable
environment.

∆,Λ, Γ � c : Clause〈P〉.

� s : Contract〈P〉.

Γ′ := Γ[�x �→ ar(k)]
Γ2 := Γ′[z �→ Int]

Λ1 � e1 : P1
Γ′ � e : Bool

Γ � d : Deadline ∆, Λ2, Γ2 � c : Clause〈P2〉
∆, Λ1 ∪ Λ2, Γ � 〈e1〉 k(�x) where e due d remaining z then c : Clause〈P1 ∪ P2〉

|Λ1 ∪ Λ2| + |P1 ∪ P2| ≤ 1 ∆, Λ1, Γ � c1 : Clause〈P1〉 ∆, Λ2, Γ � c2 : Clause〈P2〉
∆, Λ1 ∪ Λ2, Γ � c1 or c2 : Clause〈P1 ∪ P2〉

17

Some Notes on Semantics (II)

Reduction semantics:
D, τ � c

ε−→ c, c either c ′ or (τ,B).

e[�v/�x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ � 〈p〉 k(�x) where e due d remaining z then c
(τ′,k(�v))−−−−−−→ c[�v/�x, τ2 − τ ′/z]

d ⇓τ (τ1, τ2) τ ′ > τ2

D, τ � 〈p〉 k(�x) where e due d remaining z then c
(τ′,k′(�v))−−−−−−−→ (max(τ, τ2), {p})

s
ε−→ s, s either s ′ or (τ,B).

e ⇓ τ D, τ � c
ε−→ (τ ′, B)

letrec D in c starting e
ε−→ (τ ′, B)

e ⇓ τ D, τ � c
ε−→ c′ ts(ε) = τ ′

letrec D in c starting e
ε−→ letrec D in c′ starting τ ′

18

Some Notes on Semantics (III)

Progress: if � s : Contract〈P〉 then for all events ε, there is a
unique residue s such that s

ε−→ s. Furthermore, whenever
s = (τ,B) then B ⊆ P .

Preservation: if � s : Contract〈P〉 and s
ε−→ s ′ then

� s : Contract〈P ′〉 with P ′ ⊆ P .

Result: if � s : Contract〈P〉 then �s� is a contract between
parties P .

(�·� defined using s
ε−→ s ′.)

19
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Some Notes on Semantics (IV)

Reduction semantics gives rise to incremental run-time
monitoring.

But full anticipation not supported (expression language may
“hide” anticipated verdicts).

20

Summary

Abstract, trace-based contract model. Focus: blame
assignment.

Abstract definition of contract conjunction, contract
disjunction, and run-time monitoring.

Contract specification language, CSL.

Incremental run-time monitoring of CSL specifications.

Various “real-world” contracts formalized in CSL.

21

Future Work

Fragments of CSL: non-negative deadlines, fulfillable
obligations.

Full run-time monitoring.

Contract analysis:
Satisfiability (related to full run-time monitoring).

Satisfiability w.r.t. a particular party.

Contract portfolios.

Non-deterministic semantic model: determinism ⇒ decision
procedure.

Other applications (web services, network protocols)?

(Implementation.)

22
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A Short Review:
Left Inverses vs. 
Right Inverses
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*3E+Q6'R'Q'?'9
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Left Inverses are Useful
! =3)341"G1#"%1-0'-I%"103*'J4-F')341"G1#"%1-0
! EG"))1E'3Q"FBG3K'4$0G30L%.'

! =3412"%1-0'-J'I1*143E%1-0"G'%4"0)J-4F"%1-0'
T("%)$*"S<UV

4

Approaches to Left Invs
! W-FB-)1%1-0"G'"BB4-"E.

! =3412"%1-0'"BB4-"E.

5

Compositional Construction
! W-FB-)1%1-0"G'"BB4-"E.'%-'G3J%?10234)3

'T($S<XVTY-)%34S<Z:<UV
! +J[L6?9'R'L?9[J?9

! >0O3E%121%5?B43)34210L'E-FI10"%-4)'\:'S:'888''
! ]43*3P03*'B41F1%123)

6

J
L

J?9 L?9
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Derivational Construction 
! @3234"G'&0-D0'F3%.-*)
! T("%)$*"S9<V'T^1).1*"_@"&"1<`:9<V

TaGbE&_!"D"I3<X:<ZVTaGbE&_!"D"I3<ZV
T(-L30)30<ZV'888'Ta413)c9V

! >0O3E%121%5'"0"G5)1)'J-4'E-443E%03))
"0*'J-4'3dE130E5

7

!"'Q'#$%&'39''e]9f
'''''''%'(%''3;''e];f

!"''''''''''']9'#$%&'39?9[QKR,4$3'
%'(%''!"'];'#$%&'3;?9[QKRY"G)3
%'(%'''''''''''''''''''''J"1G'

Short Summary
! g3J%'10234)3'E-0)%4$E%1-0'
! W-FB-)1%1-0"GK'>0O3E%121%5'
! =3412"%1-0K'>0O3E%121%5'"0"G5)1)
! W-FBG3F30%"45

8

Dual story: right inverses?
! W"0'D3'J-GG-D'%.3')$EE3))J$G')%-413)'"I-$%'

G3J%?10234)3)h

9

i3)'-4'^-
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Right Inverse

! j2345'J$0E%1-0'.")'+B"4%1"G6'41L.%'10234)38
! 38L86
! ."GJ+*-$IG3+Q66''R'Q
! ."GJ+*-$IG3k+Q66'R'Q

10

=3P01%1-0

L'1)'E"GG3*'"'41L.%'10234)3'-J'J''1J
L+56'R'Q'1FBG13)'J+Q6'R'5'J-4'32345'Q'"0*'5

."GJ+Q6'R'l--4+Qm;6
*-$IG3+Q6'R';nQ
*-$IG3k+Q6'R';nQ'S'9'

Right Inverses are Useful
! ,-'."0*G3'G-)%'2"G$3)'10'I1*143E%1-0"G'

%4"0)J-4F"%1-0'TY-)%34S<U:<c:'888V

! ="%"'"I)%4"E%1-0'TA"0LS9<V
! 7-10'G1)%'"0*'G1)%'

! =3412"%1-0'-J'B"4"GG3G'B4-L4"F)
Ta1II-0)`oVT(-41%"S<UVT(-41."%"S<`V

11

T+9:C6:+;:p6V F"B'J)% T9:;V

TX:;:qVT+X:C6:+;:p6:+q:h6V

Rest of Talk
! (3%.-*)'J-4'41L.%'10234)3)
!A."%'"43'&35)h
! ]4-IG3F)
! W-0EG$)1-0

12
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Construction of Right Inverses
! W-FB-)1%1-0"G'"BB4-"E.3)

TA"0LS9<VTY-)%34S<c[p-."00-0S<cV

! =3412"%1-0"G'"BB4-"E.3)'
T("%)$*"S9<VTaGbE&_CI4"F-2<;V'
T(-41%"S<UV

13

Quiz
! JkK'"'41L.%?10234)3'-J'J
! LkK'"'41L.%?10234)3'-J'L''

! >)'+Lk[Jk6'1)'"'41L.%'10234)3'-J'+J[L6h

14

J
L

No!
! *$BkK'"'41L.%?10234)3'-J'*$B
! J)%kK'"'41L.%?10234)3'-J'J)%

15

*$B
J)%9

+9:96

9
J)%k

+-:96

*$B+Q6'R'+Q:Q6
*$Bk+Q:Q6'R'Q
J)%+Q:56'R'Q'
J)%k+Q6'R'+<:Q6
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Reason to fail
! JkK'"'41L.%?10234)3'-J'J
! LkK'"'41L.%?10234)3'-J'L''

! r"0+J6'⊆'=-F+L6

16

J
L

r"0+J6 =-F+L6

Lk

Surjectivity is a Key
! JkK'"'41L.%?10234)3'-J')$4O3E%123'J
! LkK'"'41L.%?10234)3'-J')$4O3E%123'L''

! +Lk[Jk6'1)'"'41L.%'10234)3'-J'+J[L68

17

J
L

LkJk

=-F+L6r"0+J6

Surjectivity in Existing Work
! TA"0LS9<V'TY-)%34S<c[p-."00-0S<cV
! W-FB-)1%1-0"G'W-FB-)1%1-0
! @$4O3E%121%5'1)'L$"4"0%33*'
" 21"')$4O3E%121%5?B43)34210L'E-FI10"%-4)
" 10EG$*10L'J$0E%1-0'E-FB-)1%-0

! =1H3430E3K'NIO3E%)'+''''''''''''''10'B432')G1*36'
" TA"0LS9<V

CGL3I4"1E'="%"%5B3'
" TY-)%34S<c[p-."00-0S<cV

r3L$G"4?)3%'+D1%.'s$-%130%6
18

85



Derivational Construction
! T("%)$*"S9<V
! TaGbE&_CI4"F-2<;V'
! T(-41%"S<UV

19

[Matsuda+10] 
! ∃Q8J+Q6'R'2

20

"**+t:'''56'R'5
"**+@'Q:56'R'@+"**+Q:566

C**'→'u
C**'→'@+C**6∃Q58"**+Q:56'R'2'⇔'C**'→n'2

@+@+t66

C**'
→'@+C**6
→'@+@+t66

"**+@'t:@'t6
→'@+"**+t:@'t66
→'@+@+t66

C**'
→'@+@+t66

"**+t:@'+@'t66
→'@+@+t66

[Glück&Abramov02]
! ∃Q8J+Q6'R'2

21

"**+t:'''56'R'5
"**+@'Q:56'R'@+"**+Q:566

"**+Q:56'Rh'@+@'t6
QKRt

5'Rh'@+@'t6
5KR@+@'t6
N!K'+t:'+@+@'t66

QKR@'Q

"**+Q:56'Rh'@'t
QKRt

5'Rh'@+@'t6
5KR@'t
N!K'+@'t:'@'t6

QKR@'Q

"**+Q:56'Rh't

v
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[Morita+06] 
! ∃Q8J+Q6'R'2

22

)$F'TQV''''R'Q
)$F'+"KQ6'R'"'S')$F'Q'

)$Fk+)6'R'T%V
→')'R')$F'T%V
→')'R'%'

)$Fk+)6'R'T)V

%3FBG"%3'J-4'Q

E.3E&'
=-F+)$Fk6⊇r"0+)$F6

>)')$F+T8V6'")')$4O3E%123'")')$Fh

Candidate of Key Technique
! CGG'*3B30*'-0'∃Q8J+Q6'R'2
! T("%)$*"S9<V'
" C05'J'1)')$4O3E%123'%-')-F3'43L$G"4')3%
" r1L.%'10234)3'1)'L1230'I5'"$%-F"%-0''

! TaGbE&_CI4"F-2<;V
" C05'J'1)')$4O3E%123'%-')-F3'rj')3%
" r1L.%'10234)3'*-3)'0-%'03E3))"45'%34F10"%3

! T(-41%"S<UV'
" @$4O3E%121%5'E.3E&'
" ,.35'")&)'D.3%.34')%1GG'J+TQV6'1)')$4O3E%123'

23

Summary
! g3J%'10234)3'*3412"%1-0'
! W-FB-)1%1-0"GK'>0O3E%121%5'
! =3412"%1-0K'>0O3E%121%5'"0"G5)1)

! r1L.%'10234)3'*3412"%1-0
! W-FB-)1%1-0"GK'@$4O3E%121%5
! =3412"%1-0K'@$4O3E%121%5'E.3E&'-4'jQ"E%'r"0L3h

24
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Problems
! g3J%?10234)3'*3412"%1-0'$)3)'10O3E%121%5'

"0"G5)1)'

! g1%%G3'*1)E$))1-0'-0'41L.%?10234)3'*3412"%1-0'
D1%.')$4O3E%121%5'"0"G5)1)h
! T(-41%"S<UV''1)'0-%"IG3'3QE3B%1-0

25

Problems
! Y$0E%1-0)'"43'4"43G5')$4O3E%123
! NIO3E%)'+C:'p'-J'J'KK'C'→'p6'"43'

)1FBG3'30-$L.'%-'E.3E&'CRp
! r"0L3+J6'1)'$)$"GG5'F-43'E-FBG3Q
" 3230'r"0L3+J6'⊇p'1)'$0*3E1*"IG3

! =3412"%1-0'F3%.-*'1)'4"43G5'$)3J$G'%-'*3P03'
B41F1%123)'10'E-FB-)1%1-0"G'"BB4-"E.8
! 0-%"IG3'3QE3B%1-0)'

TA"0LS9<V'TY-)%34S<c[p-."00-0S<cV
26

Conclusion
! g3J%'10234)3'E-0)%4$E%1-0'
! W-FB-)1%1-0"GK'>0O3E%121%5'
! =3412"%1-0K'>0O3E%121%5'"0"G5)1)
! W-FBG3F30%"45

! r1L.%'10234)3'E-0)%4$E%1-0
! W-FB-)1%1-0"GK'@$4O3E%121%5
! =3412"%1-0K'@$4O3E%121%5'E.3E&'-4'jQ"E%'r"0L3h
! ^-%'E-FBG3F30%"45h'

27
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Towards a Software Model Checker
for ML

Naoki Kobayashi
Tohoku University

Joint work with:
Ryosuke Sato and Hiroshi Unno (Tohoku University)
in collaboration with
Luke Ong (Oxford), Naoshi Tabuchi and Takeshi Tsukada (Tohoku)

This Talk
! Overview of our project on program verification, 

based on higher-order model checking (or, the model 
checking of higher-order recursion schemes)
– What is higher-order model checking?
– How are higher-order model checking problems  

solved?
– How can software model checkers can be 

constructed on top of a higher-order model 
checker?

Goal: Software model checker for ML 

Outline
! Introduction to higher-order model checking

– What are higher-order recursion schemes?
– What are model checking problems?
– How related to program verification?

!Model checking functional programs 
– Predicate abstraction and CEGAR 
– Automata-based abstractions for recursive data 

structures

! Discussion and conclusion
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Higher-Order Recursion Scheme
!Grammar for generating an infinite tree

Order-0 scheme 
(regular tree grammar)

S  ! a  c  B
B ! b  S

! a

c B c b

! a

S
c b

! a

a

c B

! ... !
c b

a

c b

a

c b

a

S

S  ! a  
c  B

B ! b
S 

Higher-Order Recursion Scheme
!Grammar for generating an infinite tree
Order-1 scheme

S  ! A c
A ! "x. a  x  (A (b x))

S: o, A: o! o
!A c

c A(b c)

! a ! ... !

c a

! a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths 
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme
!Grammar for generating an infinite tree
Order-1 scheme

S  ! A c
A ! "x. a  x  (A (b x))

S: o, A: o! o

Higher-order recursion schemes
#

Call-by-name simply-typed "-calculus
+

recursion, tree constructors
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Model Checking Recursion Schemes

e.g. 
- Does every finite path end with “c”?
- Does “a” occur eventually whenever “b” occurs?

Given
G:  higher-order recursion scheme
A:  alternating parity tree automaton (APT)

(a formula of modal $-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]       
(for order-n recursion scheme)   

p(x)
2

..
2

2

n

TRecS [K., PPDP09]
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

- First model checker for recursion schemes
- Based on reduction from higher-order model  
checking to type checking

- Uses a practical algorithm that does not 
always suffer from n-EXPTIME bottleneck

Application: model-checking higher-
order boolean programs

Theorem:
Given a closed term M of (call-by-name or 
call-by-value) simply-typed "-calculus with:

–recursion
–finite base types 
(including booleans and constant “fail”)

–non-determinism,
it is decidable whether M !* fail

Proof: Translate M into a recursion scheme G    
s.t.  M!* fail  if and only if 

G generates a tree containing “fail”.
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Example
fun repeatEven f x = if * then x else f (repeatOdd f x)
fun repeatOdd f x = f (repeatEven f x) 
fun main( ) = if (repeatEven not true) then ( ) else fail

S ! RepeatEven C Not True
C b ! if b e fail
RepeatEven k f x ! if! (k x) (RepeatOdd (f k) f x)
RepeatOdd k f x ! RepeatEven (f k) f x
Not k b ! If b (k False) (k True)
If b x y ! b x y
True x y ! x
False x y ! y

Comparison with Other Model Checking

Program Classes Verification Methods
Programs with 
while-loops

Finite state model checking

Programs with 
1st-order recursion

Pushdown model checking

Higher-order functional 
programs

Recursion scheme model 
checking

infinite
state
model 
checking

Outline
! Introduction to higher-order model checking

– What are higher-order recursion schemes?
– What are model checking problems?
– How related to program verification?

!Model checking functional programs 
– Predicate abstraction and CEGAR 
– Automata-based abstractions for recursive data 

structures

! Discussion and conclusion
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Recursion schemes as 
models of higher-order programs?
+ simply-typed "-calculus
+ recursion
+ tree constructors
+ finite data domains (via Church encoding; 

true = "x."y.x, false="x."y.y)
- infinite data domains 

(integers, lists, trees,…)
- advanced types (polymorphism, recursive 

types, object types, …)
- imperative features/concurrency

Dealing with Infinite Data Domains

!From recursion schemes to higher-
order multi-tree transducers (HMTT),
to deal with algebraic data types 
(lists, trees, …) [K.,Tabuchi&Unno, POPL 
2010]

!Predicate abstraction and CEGAR
(c.f. BLAST, SLAM, …)

Predicate Abstraction and CEGAR 
for Higher-Order Model Checking

Predicate 
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

x>0

F(g, b)= 
if b then g(true)
else g(%)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates
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What are challenges?
! Predicate abstraction

– How to choose predicates for each term, in 
such a way that the resulting HOBP is 
consistent?
E.g.     fun f g x = ...  g (x+1) ...

fun h y z = ...
fun main() = ... f (h 0) u ...

The same predicate should be used for z and u+1.

! CEGAR
– How to find new predicates to abstract each 

term to guarantee progress (i.e. any spurious 
counterexample is eliminated)?

Our Approach
! Predicate abstraction

! CEGAR

Abastraction types to express abstraction interface:
e.g. f: (x:int["x.x>0] ! int["y.y>x])
Assuming the argument x is abstracted using predicate x>0, 
the return value y should be abstracted using y>x.

f(x) = if x>0 then x+1 else ... 
=> F(b)= if b then true else ...

Reduction from abstraction type finding problem to 
a refinement type inference problem for SHP 
(straightline higher-order program).

Example (predicate abstraction)

sum: (n:int[]! (int["x.x>=n] !") !")

let sum n k = if n<=0 then k 0
else sum (n-1) (fun x-> k(x+n))

in sum m (fun x-> assert(x>=m))

let sum ( ) k = if % then k true
else sum ( ) (fun b-> k true)

in sum ( ) (fun b-> assert(b))
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Our Approach
! Predicate abstraction

! CEGAR
Reduction from abstraction type finding problem to 
a refinement type inference problem for SHP
(straightline higher-order program).

Abastraction types to express abstraction interface:
e.g. f: (x:int["x.x>0] ! int["y.y>x])
Assuming the argument x is abstracted using predicate x>0, 
the return value y should be abstracted using y>x.

f(x) = if x>0 then x+1 else ... 
=> f’(b)= if b then true else ...

Example (predicate discovery)

sum: (n:int[]! (int[ ] !") !")

let sum n k = if n<=0 then k 0
else sum (n-1) (fun x-> k(x+n))

in sum m (fun x-> assert(x>=m))

let sum ( ) k = if % then k ( )
else sum ( ) (fun ( )-> k ( ))

in sum ( ) (fun ( )-> assert(%))

spurious error path (with k = (fun ( )-> assert(*)) ):
sum ( ) k ! if % then k( ) else ... ! k( ) ! assert(*) ! fail

Example (predicate discovery)
let sum n k = if n<=0 then k 0

else sum (n-1) (fun x-> k(x+n))
in sum m (fun x-> assert(x>=m))

Straightline higher-order program (SHP):
let sum n k = assume(n<=0); k 0
in sum m (fun x -> asume(not(x>=m)); fail)

Spurious error path:
sum ( ) k ! if % then k( ) else ... ! k( ) ! assert(*) ! fail 

Typing for SHP:
sum: (n:int ! ({x:int | x>=n} ! ") ! "

[Unno&K. PPDP09] 
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Experiments
cycle Time 

(sec)
mc91 2 0.07
ackermann 3 0.15
a-cppr 6 3.40
a-max 5 4.78

l-zipmap 4 0.20

l-zipunzip 3 0.12

repeat 3 0.15
a-max-e 2 0.13

(Environment: Intel(R) Xeon(R) 3Ghz with 8GB memory)

Arrays encoded by:
let mk_array n i =

assert(0<=i && i<n); 0
let update i n a x =

a(i);
let a’ j = if i=j then x else a(i)
in a’

Outline
! Introduction to higher-order model checking

– What are higher-order recursion schemes?
– What are model checking problems?
– How related to program verification?

!Model checking functional programs 
– Predicate abstraction and CEGAR 
– Automata-based abstractions for recursive data 

structures

! Discussion and conclusion

Remaining challenges
!More efficient higher-order model checker

– practical fixed-parameter linear time algorithm 
(c.f. [K., FoSSaCS 2011])

– efficient implementation techniques (e.g. BDD)
! Supporting more language features

– recursive data structures
• abstraction by automata/transducers

– recursive types
– objects (software model checker for Java)

!More verification power
– Abstractions using higher-order predicates
– Inference of auxiliary arguments 
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Conclusion
!New program verification method based on 

higher-order model checking 
– Many attractive features

• Sound, complete, and fully automatic for  
certain classes of higher-order programs and 
verification problems 

• Subsumes first-order/pushdown model checking
• Integration of types and model checking

– types as certificates
– counterexamples

– Many interesting and challenging topics

References
! K., POPL09

From program verification to model-checking, and typing

! K.&Ong, ICALP09  Complexity of model checking

! K.&Ong, LICS09  From model-checking to type checking

! K., PPDP09  First practical higher-order model-checking algorithm

! K., Tabuchi & Unno, POPL10 
Extension to transducers and its applications

! Tsukada & K., FoSSaCS 10 
Extension to deal with more advanced types

! Unno, Tabuchi & K., APLAS 2010
Extension of POPL10 work to deal with arbitrary tree-processing 

programs

! K., FoSSaCS 2011
Practical fixed-parameter linear time algorithm for higher-order model 

checking
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Modal-μ Definable
Graph Transduction

2/35

What We Want to Do
! Verification of Graph-to-Graph Transformations

! e.g., Queries on Graph-Structured Database
or   Transformations of XML with “id” links

f
a

a

b

b

A

A

B
B

3/35

What We Want to Do
! Verification of Graph-to-Graph Transformations

with respect to input/output specificationsp p p

f
a

a

b

b

A

A

B
B

verify whether or not:
for any graph G,   G φIN f(G) φOUT

φIN
“From (a) we can
reach (a) again.”

φOUT
“From (A) we can
reach (A) again.”
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4/35

Verification by Pre-Image
(a.k.a. “weakest precondition” or “inverse type inference”)

Given f and φOUT , compute invf(φOUT) such that:
for any graph G,   f(G) φOUT iff  G invf(φOUT)

Then “for any graph G,   G φIN f(G) φOUT”
iff “for any graph G,   G (φIN → invf(φOUT ))”

i.e.,  φIN → invf(φOUT ) is valid

 f(G) φOUT iff

f φOUT

invf(φOUT)

φIN

5/35

To Be More Concrete…

! Which logic can we use for specifying φIN/OUT ?

! Must be strong enough to express useful conditions.
! Must be weak enough to have decidable validity.

! What kind of transformation f can be verified ?

! We must be able to compute the pre-image.

6/35

Our Approach

! Take Modal-μ Calculus as the specification logic
! (At least for trees) capture all existing XML-Schemas

! Define a new model of graph transformation
called Modal-μ Definable Transduction
! Pre-image of modal-μ sentence can be

fully automatically computed
! Expressive enough to capture

(unnested) structural recursion on graphs
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7/35

Related Work
! MSO (Monadic 2nd-Order Logic) Definable Transduction

! Overall structure is more or less the same.
! Ours is a proposal to use Modal-μ instead of MSO

! Hoare-Style Verification of Imperative Programs
! Ours don’t deal with pointers or destructive updates.
! Rather, it is more suitable for

functional programs
! Structural recursion is handled

without any annotations

{ φIN }
p := root
while  p != null do

q := p.next
p.next := p.next.next
p := q

end
{ φOUT }

fun f( {$l: $x} ) = {cap($l) : g($x)}
fun g( {_: $x} ) = f($x)
{ φIN }   f   { φOUT }

8/35

Outline
! Two Kinds of Logics on Graphs

! Predicate Logics
! Modal Logics
! Why Modal-μ ?

! Review: Predicate-Logic Based Approach
! MSO-Definable Graph Transduction [Courcelle 94]

! Our Work:
! Modal-μ Definable Graph Transduction
! Computation of Pre-Image

9/35

Graphs (in Today’s Talk)
! Σ : Finite Nonempty Alphabet
! G = (V, E, π)

! V Set of Nodes
! E V V Set of Directed Edges
! π  : V → 2Σ Labels on Nodes

b

a b

a

Σ = {a, b}
V = {

} 

b

{{ a b

a

π =
→ {a,b}
→ {a}
→ {b}
→ {}
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10/35

Predicate Logics on Graphs

φ ::=
| False | φ | φ φ 
| σ(x)  (for σ Σ) “node x is labeled σ”
| edge(x, y) “an edge connects x to y”
| x. φ “there’s x that makes ψ hold”

| S. φ “there’s a set S that makes ψ hold”
| x S “x is in S”

FO

MSO

We can define True, φ φ , φ→φ, x.φ, and S.φ.

11/35

Semantics
! For a graph G=(V,E,π) and an environment
Γ : Var→V

!G, Γ σ(x) iff  σ π(Γ(x))
“node x is labeled σ”

!G, Γ edge(x, y)  iff  (Γ(x), Γ(y)) E
“an edge connects x to y”

!G, Γ x.φ iff  there’s v V s.t. G,Γ[x:v] φ
…

12/35

Modal Logics on Graphs

ψ ::=
| False | φ | φ φ 
| σ  (for σ Σ) “current node is labeled σ”
| φ  “current node has an outgoing edge

whose destination satisfies φ”

| X
| μX.φ “least fixpoint” (X must be in even # of )

We Can Define: φ (dual of ) and νX.φ (GreatestFixPt)

M

Mμ
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Semantics
! For a graph G=(V,E,π), an environment
Γ : Var→2V, and the current node v V

!G, v, Γ σ iff  σ π(v)
“current node is labeled σ”

!G, v, Γ φ iff  there’s w (v,w) E & G,w,Γ φ
“current node has an outgoing edge

whose destination satisfies φ”

!G, v, Γ μY. φ iff  v LFP(F)
where F(A) = {w V | G, w, Γ[Y:A] φ}

…

14/35

Examples
! “From the node x, we can reach a σ-node”

S. ( (x S y. z.(y S
(edge(y,z)→z S)))

→ y. (y S σ(y)))
! “Confluence”

y. z. ( edge(x,y) edge(x,z)
→ w. (edge(y,w) edge(z,w)) )

! “From the current node, we can reach a σ-node”
μY. (σ  Y)

! “Confluence”
(No way to express it in Modal-μ)

15/35

MSO Definable (1-copying) Transduction
[Courcelle 94]

A set of MSO formulas T = 
σOUT(x) for each σ Σ
edgeOUT(x,y)

defines  a transformation  fT converting
G = (V, E, π) into  G’ = (V, E’, π’) where

!π’( v ) = { σ | G, x:v σOUT(x) }
! E’ = { (v, w) |  G, x:v, y:w edgeOUT (x,y) }
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Example (Σ = {a, b, A, B})

a

a

b

b

A

A

B
B

p ( { , , , }

edgeOUT(x, y)  ≡
z.(edge(x,z) edge(z,y))

aOUT(x) ≡ bOUT(x) ≡ False
AOUT(x) ≡ a(x)
BOUT(x) ≡ b(x)

17/35

Pre-Image is Easily Obtained

a

a

b

b

A

A

B
B

x. A(x) → y.
edge(x,y)

A(y)
Inline 

Expansion

x. a(x) → y.
z.(edge(x,z) edge(z,y))
a(y)

g yyyyyyyyy

edgeOUT(x, y)  ≡
z.(edge(x,z) edge(z,y))

aOUT(x) ≡ bOUT(x) ≡ False
AOUT(x) ≡ a(x)
BOUT(x) ≡ b(x)

18/35

Expressiveness & Complexity

FO

MSO

Modal

Modal-μ

φ

μX.φ S.φ

x.φ
PSPACE

EXPTIME
Undecidable
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19/35Expressiveness & Complexity
(on “tree-like” graphs)

FO

MSO

Modal

Modal-μ

φ

μX.φ S.φ

x.φ
PSPACE

EXPTIME
NonElementary

20/35

Modal-μ and MSO
! Complexity of Validity Checking

! Modal-μ : EXPTIME-complete
! MSO : Undecidable (Even in Trees, HyperEXP)

! Expressive Power
! Modal-μ =  Bisimulation-Invariant Subset of MSO

[Janin & Walukiewicz 96]
! “Bisimulation-Invariant” 

“Physical equality of pointers cannot be checked”
! Not a severe restriction for purely functional 

programs!

21/35

Modal-μ Definable (1-copying) Transduction
A set of Modal-μ formulas T =

σOUT for each σ Σ
edgeOUT an existential formula Fv={X} 

defines  a transformation  fT converting
G = (V, E, π) into  G’ = (V, E’, π’) where

!π’( v ) = { σ | G, v σOUT }
! E’ = { (v, w) |  G, v, X:{w} edgeOUT }
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Example (Σ = {a, b, A, B})

a

a

b

b

A

A

B
B

A → Aa → a

p ( { , , , }

edgeOUT ≡ X
aOUT ≡ bOUT ≡ False
AOUT ≡ a
BOUT ≡ b

23/35

Existential Formula
! A formula e with one free variable X is

existential, if

! Examples:
! “X True”   is not existential  (Consider P={}).
! “ X” is existential.
! “ X” is not    (when v is a leaf node …).
! “σ” is not, but “X σ” is.

for all  G=(V,E,π), v V, P V
G, v, X:P e     iff     w P.  G, v, X:{w} e

24/35

Syntactic Condition

! Theorem:
e is existential if it is in the following syntax

e ::= False | X | Y | e e | e | μY. e
| e φ   where φ is any formula without free variables

(True, , σ, , and GFP must be “guarded” by _ _)

OPEN QUESTION: is this a necessary condition ?
(i.e., do all existential formulas have logically-equivalent forms in this syntax?)

for all  G=(V,E,π), v V, P V
G, v, X:P e     iff     w P.  G, v, X:{w} e
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More Examples
! edgeOUT ≡ X edgeOUT ≡ a

! edgeOUT ≡ μY. ((X a) Y)

edgeOUT ≡ X X
! edgeOUT ≡ μY. ((X a b) ( a Y)

a a

b

a
a

a b

b

a

(Non-Examples)

26/35

Pre-Image Computation
For T = (σOUT, eOUT), define
! inv( False ) = False
! inv( φ ) = inv( φ )
! inv( φ1 φ2 ) = inv( φ1 ) inv( φ2 )
! inv( σ ) = σOUT

! inv( φ ) = edgeOUT [X / inv(φ)]
! inv( Y ) = Y
! inv( μY. φ ) = μY. inv(φ)

Theorem:   fT(G), v  φ     iff    G, v inv(φ)

27/35

Proof of the Theorem

! By Induction on φ. The essential case is:
G, v inv( φ)
iff G,v edgeOUT [X / inv(φ)] (definition of inv)

iff w (G,v,X:{w} edgeOUT and G,w inv(φ)) (ext)
iff w ((v,w) in E’ and G,w inv(φ)) (def of E’)
iff w ((v,w) in E’ and fT(G),w φ) (IH)
iff fT(G), v  φ (definition of )

Theorem:   fT(G), v  φ     iff    G, v inv(φ)
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n-copying
Modal-μ Definable Transduction

A set of Modal-μ formulas T =
σk

OUT for each σ Σ, k {1 .. n}
edgeik

OUT for each i, k {1 .. n} : existential
defines  a transformation  fT converting
G = (V, E, π) into G’ = (V*{1..n}, E’, π’) where

!π’( <v,k> ) = { σ | G, v σk
OUT }

! E’ = { (<v,i>, <w,k>)
|  G, v, X:{w} edgeik

OUT }

29/35

Example (Σ = {a, b, A, B})

a

b b

<u,2> A→ b
u A2

OUT →
( edge21

OUT [b1
OUT]

edge22
OUT [b2

OUT] )

p ( { , , , }

A2
OUT →

edge12
OUT ≡ X

edge21
OUT ≡ X

a1
OUT ≡ A2

OUT ≡ a
b1

OUT ≡ B2
OUT ≡ b

otherwise ≡ False

a

b b

A

B

B

u a → b

30/35

Example
! Mutual structural recursion (without 

accumulating parameters) can be dealt with.
! For the detail of structural recursion over graphs, 

see [Buneman, Fernandez & Suciu 00]
! fun ev(            x ) =                    od(x)
! fun ev(            x ) =            od(x)
! fun od(            x ) =            ev(x)
! fun od(            x ) =                     ev(x)

          a           A            A

          b           B

            b

1 2

          a

              B

          A

          B

3

1

3 4

edge12
OUT ≡ a X edge23

OUT ≡ a X
edge13

OUT ≡ a X
edge31

OUT ≡ b X
edge34

OUT ≡ b X edge41
OUT ≡ b X
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Pre-Image Computation
! invk ( False, Δ ) = False
! invk ( φ , Δ ) = invk ( φ, Δ )
! invk ( φ1 φ2, Δ ) = invk ( φ1, Δ ) invk ( φ2, Δ )
! invk ( σ, Δ ) = σk

OUT

! invk ( φ, Δ ) = j {1..n} edgekj
OUT [X / invj(φ, Δ)]

! invk ( Y, Δ ) = Yk if  k S
! invk ( Y, Δ ) = μYk. invk( φ, Δ[Y→<S {k},φ>] )

where (S,φ) = Δ(Y)
! invk ( μY.φ , Δ ) = μYk. invk( φ, Δ[Y→<{k},φ>] )

Thm:  fT(G), <v,k>  φ     iff    G,v invk(φ, {})

32/35

Example
edge11

OUT ≡ edge12
OUT ≡ edge21

OUT ≡ edge22
OUT ≡ X

a1
OUT ≡ a2

OUT ≡ a

! f(G), <v,1>  μY. (a Y)
! G, v  μY1. inv1( a Y )
! G, v  μY1.     a ( inv1(Y) inv2(Y))
! G, v  μY1.   a ( Y1 μY2.inv2(a Y))
! G, v  μY1. a ( Y1 μY2. a ( inv1(Y) inv2(Y))
! G, v  μY1. a ( Y1 μY2. a ( Y1 Y2))

OPEN QUESTION: can 
inv(μ) be shorter
than (n-1)!+1  ?

33/35

Some Useful Results

Construction is analogous to inv(φ).

Theorem:
Modal-μ Definable Transduction is 
closed under composition.

Theorem:
Modal-μ Definable Transduction

MSO Definable & Bisimulation-Invariant.

It is known that Bisimulation-Invariant MSO transduction is
equal to structural recursion [Colcombet & Löding 04].
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Conclusion
! Modal-μ Definable Transduction

! Pre-Image of a modal-μ sentence is computable
! Structural recursion is expressible
! (Not in the talk)

! Node-erasing transformations
! Edge-labeled graphs
! Transformations with multiple inputs/outputs

! Future Work
! Implementation 
! Addition of Backward Modality

! ( G,v φ     iff     there’s (w,v) E s.t. G,w φ )
! Syntactic necessary condition for edgeOUT
! More concise formula for inv(μY.φ)

35/35
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Determining the Valid Parameters
for the Weight-Balanced Tree

Algorithm

Yoichi Hirai
IST, the University of Tokyo

January 11, 2011

(joint work with Kazuhiko Yamamoto
at Internet Initiative Japan)

History of Weight-Balanced Tree Algorithm

1972 proposed by Nievergelt and Reingold

1992 valid parameter determination and an example
implementation of set operations by Adams

–1995 an implementation by Adams in MIT-Scheme

1998 another Scheme implementation in SLIB

–2002 Data.Map and Data.Set implementation in
Hackage

History of Weight-Balanced Tree Algorithm

1972 proposed by Nievergelt and Reingold

1992 valid parameter determination and an example
implementation of set operations by Adams
(buggy)

–1995 an implementation by Adams in MIT-Scheme
(buggy)

1998 another Scheme implementation in SLIB (buggy)

–2002 Data.Map (buggy) and Data.Set implementation
in Hackage

2010-08-03 A bug found in Data.Map
a tree got unbalanced after a delete

buggy: violating the restriction posed by the algorithm design.
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Question

! There is a parametrized binary tree algorithm
∆ decides whether a tree is balanced
Γ chooses a balancing strategy:

single/double rotation
! Wrong parameters break balance
(found to be a common mistake)

Q. What parameters are correct?

Weight-Balanced Tree Algorithm
(Nievergelt and Reingold, 1972)

The balance condition with ∆(wrong
version)

The top node is balanced iff

#L ≤ ∆×#R

and vice versa
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The balance condition with∆

The top node is balanced iff

#L + 1 ≤ ∆× (#R + 1)

and vice versa

Balancing Strategy 1: Single Rotation

Balancing Strategy 1: Single Rotation is
Not Enough

...when the black part is too large, this
cannot balance the whole.
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Balancing strategy withΓ

choose double rotation

when #M + 1 ≥ Γ× (#R + 1)

Two Parameters and One Question

! ∆ for balance condition
! Γ for choosing single or double

Q. Under what (∆,Γ ) every insert/delete keeps
balance?

Nievergelt and Reingold has (1 +
√
2,
√
2).

Comparing (1 +
√
2)m and n is costly (taking

square?).

1992: Adams’s Analysisy
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2010: Shadow of Doubt
On Hackage, the bug ticket was closed after they
changed the parameters.

QuickCheck Result by Kazu Yamamoto
apparently bounded.

Omega: Presburger Solver

copied Coq responce changed / into && and so on.
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Conjecturej

(sound) in the area, balance never broken
(complete) outside the area, balance can be broken

Completeness Proof
1. given any parameter pair (just) below the lower

boundary,
2. take large enough z so that

z ≥ Γ∆−∆+Γ
1+∆−Γ∆ ∼ positive

small positive
3. deletion in the left subtree breaks the balance

Soundness Proof

Goal: Within the range, the balance is never broken.
Reasons for using proof assistant Coq rather than
proving by hand:

! many cases on parameter pairs
! every operation on every tree
! nested if in every operation
! balance condition of every subtree
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The Soundness Proof

12,900 lines of Coq.

The soundness proof

12,900 lines of Coq.

Required Time
! 62 days from 2010-08-18 to 2010-10-18
! 208 lines per day among other things

Arithmetic Lemmas
Lemma NR_deep_insert:

good_params ->
forall (a b c d e: Z),

???????
(a#1) (b#1) (c#1) (d#1) (e#1).

Informally: a, b, c , d , e are

← the tree just before rotation
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Arithmetic Lemma: Expanded
good_params ->
forall a b c d e : Z,
balance (a # 1) (b # 1) ->
~ balance (a # 1) ((b # 1) + 1) ->
(c #1) + (d #1) + 1 + (e #1) + 1 == (b #1) + 1 ->
balance (c # 1) (d # 1) ->
balance ((c # 1) + (d # 1) + 1) (e # 1) ->

if NR_isSingleSize ((c # 1) + (d # 1) + 1) (e # 1)
then
balance (a # 1) ((c # 1) + (d # 1) + 1) /\
balance (c # 1) (d # 1) /\
balance ((a #1) + (c #1) + (d #1) + 1 + 1) (e # 1)

else
balance (a #1) (c #1) /\ balance (d #1) (e #1) /\
balance ((a #1) + (c #1) + 1) ((d #1) + (e #1) + 1)

Arithmetic Lemma: Proof Structure

! case analysis for∆
! case analysis for special small trees
needed because of this kind of reasoning:
b > 2.5 implies b ≥ 3 because b ∈ Z

! reducing Q argument into Z argument
! psatz tactics

Arithmetics is Not Enough

We have to define binary trees.

Module FSet (X: OrderedType).

Definition Size := Z.
Definition k := X.t.

Inductive FSet :=
| Tip: FSet
| Bin: Size -> k -> FSet -> FSet -> FSet.
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Arithmetics is Not Enough

We have to define insertion.

Fixpoint insert (kx:k) (t:FSet): FSet :=
match t with

| Tip => singleton kx
| Bin _ ky l r =>

match X.compare kx ky with
| GT _ => balanceL ky l (insert kx r)
| LT _ => balanceR ky (insert kx l) r
| EQ _ => bin kx l r

end
end.

Arithmetics is Not Enough

Definition balanceR (kx: k) (l r:FSet) :=
match (isBalanced r l) with

| true => bin kx l r
| false => rotateR kx l r

end.

Arithmetics is Not Enough

Definition rotateR :
k -> FSet -> FSet -> FSet :=

fun k l r =>
match l with

| Tip => assert_false k l r
| Bin _ _ ll lr =>

if isSingle lr ll then
singleR k l r

else
doubleR k l r

end.
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Insert and Delete
Lemma insert_balanced:

forall (t: FSet) (kx: k),
good_params ->
Is_true (balanced t) -> validsize_rec t ->
Is_true (balanced (insert kx t)).

Lemma delete_balance:
good_params ->
forall (x: k) (t: FSet),

validsize_rec t ->
Is_true (balanced t) ->
Is_true (balanced (delete x t)).

! induction on t
! case whether size changed or not

l d b Q
Set Operations

(request by Milan Straka, the maintainer of the
containers package in Hackage)

! difference, union: straightforward
! some trick required for defining intersection
induction on two arguments

Intersection Used This Induction

Fixpoint pair (l r: Tree): TreePair :=
match l with

| Tip =>
match r with

| Tip => TipTip
| Bin rl rr => TipBin rl rr

end
| Bin ll lr =>

match r with
| Tip => BinTip ll lr
| Bin rl rr => BinBin (pair l rl) (pair lr r)

end
end.

Experimental Function command solved this

also, I packed two arguments in a single pair

119



Achievements
1972 Proposed by Nievergelt and Reingold
1992 parameter analysis and an example

implementation of set operations by
Adams

1995 or older MIT-Scheme implementation by
Adams (buggy)

1998-02-09 SLIB implementation (buggy)
–2002 Data.Map (buggy) and Data.Set

implementation in Hackage
2010-08-03 A bug: tree got unbalanced
2010-10-19 Submitted a paper to Journal of

Functional Programming with a Coq
proof script

2010-12-18 SLIB incorporated our change

A sequel: a bug in Z3
Z3 is an SMT (satisfiability modulo theory) solver
developed by Microsoft.

1. We tried using Z3 instead of Omega
Presburger solver

2. Z3 gave a different result from Omega’s result
3. Eventually, we found a bug in Z3 and reported

it to Nicolaj Bjørner, whose team fixed it.

Bug highlight:

assertions.
satisfiable? -> no
more assertions.
satisfiable? -> yes

Small, One-Shot Project, but It Produced

! a bug fix for libraries
! new rigorous knowledge on a widely-used
algorithm

! a modestly complex problem for SMT solvers
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WBT is Chosen When Storing 2-Bit
Information is Costly

AVL / Red-Black Each node stores small
information:
height difference / node-state

Weighted Balance Trees Each node stores size of
the subtree.
can be used for index operations

! 2 bits can be stored efficiently in LSBs of a
pointer in IA32
but common Haskell / Scheme
implementations do not exploit this

! a binary tree with index operations can be used
instead of updatable arrays.
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An adversarial approach to
interaction specifications

(Work in progress)
DIKU-IST 2011 / Tokyo

Anders Starcke Henriksen
starcke@diku.dk

Department of Computer Science
University of Copenhagen

January 11, 2011

Motivation

The context for this talk:

Specification and verification of concurrent and distributed systems.

Key concept: interaction.

This is not a technical talk, we seek to motivate and explain two topics:

Cooperative vs. adversarial specifications.

Interactions viewed as games.

2

Introduction

An interaction happens when several parties perform certain actions
affecting each other (communication scenarios, business processes,
computer programs, . . . )

An interaction specification is a set of requirements about the interaction:

Something must happen/something must not happen, choices,
deadlines, . . .

Examples: Protocol specifications, business process languages,
workflows, session types . . .

3
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Programming by contract - scenario

Programming by contract (PBC) facilitates modular construction of
software, by means of formal specifications.

Consider a code producer assigned with the task of producing a
program satisfying some specification.

The task is broken down into several modules, each with a formally
specified interface (typically with pre- and postconditions).

Several different programmers can now work on the different modules
and then if all developed modules satisfy their specifications, the full
program will also satisfy its specification.

4

A cooperative world?

Most formal specifications are done in a cooperative way:

All participants work to fulfill a set of common goals.
! Every programmer want the final program to work.

If the goals are not formalized, the participants are expected to follow
the intentions behind.

! If the specification does not rule out infinite loops, no programmer
should just implement the trivially looping program.

There is no notion of what happens after a failure to follow the
specification

! In case of a programming error, the module must be corrected before
the main program can work.

Often based on partial correctness.
! Enables runtime monitoring of specifications.

5

Problems with cooperative settings

The cooperative methodology contains hidden problems:

It only takes one participant with conflicting goals to “topple the
house of cards” (e.g. one participant who refuses to answer anything
in a partial correctness setting).

How to decide whether someone has followed the intentions?

What if the specification is not followed? Failures do happen.

If I am allowed to loop - why not loop always (partial correctness),
what can an eventually guarantee be used for (except fulfilling
another eventually guarantee?)

6
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Problems with cooperative settings - cont.

Participants may seem to have the same goals, but in reality slightly
conflicting goals:

Goal Goal Goal

Ideal. Actual. Actual?

The original specification could have been a compromise, which is not
captured in the cooperative setting.

7

PBC scenario - cooperative problems

The scenario seems natural at first, but several problems exist:

The programmers need to fulfill the specification, but is there
anything that forces the programmer to use the best solution, or even
a good solution? what happens if suboptimal solutions are used?

How are the programmers paid (lines of code, number of finished
modules, ...)? would they prefer a quick solution to a good one?

What if a third party code is used, can the programmers just blame
that? (e.g. a library picked by the programmer).

8

Adversarial composition

In an adversarial setting each participant is an autonomous entity:

Each participant is potentially an adversary of the other participants.

Each participant has its own set of goals, not necessary compatible
with the goals of the other participants.

A participant will defect from the “intended” path or even break a
whole specification if it is more beneficial in terms of his own goals.

A participant will still follow rules if the penalty for breaking them or
the reward for following them, is large enough. (Cooperation by need)

It is in general not enough for a participant to just reflect blame for a
failure. The participant must assume responsibility by quantifying the
penalty or reward.

9
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PBC - adversarial view

The adversarial viewpoint illuminates the problems:

If the programmers have their own goal, they might produce
suboptimal code, unless they are penalized/rewarded accordingly.

The consequences for breaking a specification must be clear, i.e. what
is the risk. In an adversarial setting it could be broken at any time.

In particular, we should never let a high-assurance service rely on a
low-assurance one (e.g. a third party one).

Instead of the traditional distinction between a module and its
environment, one has to consider the environment not as a monolithic
entity, but as a composite entity consisting of multiple parts.

10

Comparison - cooperative vs. adversarial

In the cooperative setting the participants share the same goals, and
therefore follow the specifications directly.

In the adversarial setting the participants have their own goals, and
are only responsible for actions in terms of rewards and penalties.

In the cooperative setting the focus is on the “happy” path, and
potential failures are ignored.

In the adversarial setting the focus is on the “unhappy” path, and
failures always have to be taken into account.

11

Apparently cooperative settings

Even apparently cooperative settings benefit from an adversarial
viewpoint:

Assuming responsibility in case of failure is more robust then just
propagating blame.

The cooperative participants can be seen as working together against
a common adversary (e.g. the laws, Nature), whose goals not
necessarily are compatible with the goals of the participants.

No need to assume that the participants have the same goals.

One can compare/analyse implementations in terms of the
rewards/penalties.

12
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Interaction as games
Adversarial interactions can be seen as extensive-form games:
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Game-theoretic concepts

The realisation of the game-theoretic concepts are summarised in the
following table:

Concept Realisation
Players Participants
Moves Actions

Specifications Game rules
Payoffs Rewards/penalties

Strategies Implementations (programs)
Winning strategies Correct programs
Dominant strategies Optimized programs

14

PBC - game-theoretic view

To capture interaction, pre- and postconditions are generalized to
extensive-form games.

Because of the adversarial nature, using eventually guarantees as total
correctness is not enough.

Instead, we need a notion of timed total correctness, corresponding to
real-time deadlines (similar to protocol specifications).

! Enables runtime monitoring.

Note: Deadlines are not restricted to interaction specifications. When
more robust specifications are needed, they also make sense for pre-
and postcondition type specifications.

15
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Strategies

When program code is seen as the strategy, the running code can be seen
as an agent operating on behalf of a principal (the programmer):

When the strategy is chosen, the agent carries out the orders
specified by the strategy and the principal can not influence the agent
anymore.

! The running code can not be changed at runtime, unless directly
modelled as input.

The agent does not have knowledge about or is responsible for the
games of the principal, the agent might not be able to observe all
moves during runtime (e.g. for a delegation scenario).

16

Formal models

Previous work has devised a concrete game-theoretical model1:

Based on two-party games with quantifiable payoffs.

Notion of conformance of a program (strategy), p, with respect to a
set of specifications (games), written |= p : s1, . . . , sn.

! p will ensure that the total payoff is always non-negative, meaning that
it will never be the first to break a specification.

Compositionality theorem: If |= p1 : s, s1 and |= p2 : s, s2 and only s
mentions the internal communication between p1 and p2 then
|= p1‖p2 : s1, s2.

s is the same specification as s but with the roles of the two players
interchanged, p1‖p2 are the programs running in parallel.

1A. S. Henriksen, T. Hvitved, A. Filinski, A game-theoretic model for distributed
programming by contract.

17

Formal models - cont.

Current work is concerned with revising the model, key concepts include:

Specifications based on events instead of actions.

Hierarchical events (events definable from other events).
! Compositionality of specification development, refinement of

specifications.

Quantitative vs. qualitative events.
! Some properties are hard to quantify, but some specifications need to

mention those properties alongside quantifiable events.

! Mix quantitative and qualitative events in the same specification.

18
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Perspective

This work was done in the context of the project TrustCare: Trustworthy
Pervasive Healthcare Services 2.

Trustworthy it-systems in the healthcare sector.

We believe that a game-theoretic model based on an adversarial approach
would serve well as a foundation for not only interaction specifications for
code, but also for e.g. workflows employed in the healthcare domain.

Early work was done in cooperation with Tom Hvitved:

Ideas were applied to business processes as well.

Current work separates from THV’s work by being closer to
game-theory (e.g. payoffs).

2www.trustcare.eu
19

Summary

It might be hard to convince people to use the adversarial model:

Existing modelling approaches are cooperative, one has to reverse
engineer the scenarios behind them.

Many scenarios seem cooperative at the first glance.

The adversarial model forces people to consider breaches, failures etc.
- which might be very hard to account for.

Regardless, we think that the adversarial model:

Gets the problems out in the open.

Is a generalization of the cooperative setting.

Is fundamentally how the world works.

20
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The Setting
Domain-Specific Languages in POETS

We have a number of domain-specific languages.

Each pair shares some common sublanguage.

All of them share a common language of values.

We have the same situation on the type level!

How do we implement this system without duplicating code!
4

How Can we Compose Data Structures?
. . . and Functions Defined on Them?

This is easy on non-recursive data structures.

Composition by sum or product.

For recursively defined data structures this is different.

Example (A simple expression language)

data Expr = Val Int

| Add Expr Expr

eval :: Expr -> Int

eval (Val x ) = x

eval (Add x y) = eval x + eval y

5

Compositional Data Types
Expression Problem [Phil Wadler]

The goal is to define a data type by cases, where one can add
new cases to the data type and new functions over the data
type, without recompiling existing code, and while retaining
static type safety.

“Data Types à la Carte” by Wouter Swierstra (2008)

A solution to the expression problem: Decoupling!

data types: decoupling of signature and term construction
! isolated signature (expression data type without recursion)
! explicit recursive construction of terms over arbitrary signatures

functions: decoupling of pattern matching and recursion
! functions are defined on signatures
! recursion is added separately

signatures (+ functions defined on them) can be composed
6
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Decoupling Signature and Term Construction

The data type contains both the signature of operations and the inductive
definition of terms over them through recursion.

data Expr = Val Int

| Add Expr Expr

Remove recursion from the definition

data Sig e = Val Int

| Add e e

Recursion can be added separately

data Term f = Term (f (Term f))

Term Sig ∼= Expr

7

Combining Signatures
In order to extend expressions, we need a way to combine signatures.

Direct sum of signatures

Type constructor :+: of kind (* -> *) -> (* -> *) -> (* -> *):

data (f :+: g) e = Inl (f e) | Inr (g e)

Example

data Sig e = Val Int

| Add e e

data Val e = Val Int

data Add e = Add e e

Val :+: Add ∼= Sig

8

Separating Function Definition from Recursion

Compositional function definitions as algebras

In the same way as we defined the types:

define functions on the signatures (non-recursive): f a -> a

apply the resulting function recursively on the term: Term f -> a

combine functions using type classes

Algebras

class Eval f where

evalAlg :: f Int -> Int

Applying a function recursively to a term

algHom :: Functor f => (f a -> a) -> Term f -> a

algHom f (Term t) = f (fmap (algHom f ) t)

9
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Defining Algebras
On the singleton signatures

instance Eval Val where

evalAlg (Val x) = x

instance Eval Add where

evalAlg (Add x y) = x + y

On sums of signatures

instance (Eval f , Eval g)

=> Eval (f :+: g) where

evalAlg (Inl x) = evalAlg x

evalAlg (Inr y) = evalAlg y

Applying the resulting unique homomorphism to terms

eval :: (Functor f, Eval f) => Term f -> Int

eval = algHom evalAlg

10
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Using Compositional Data Types

Using Compositional Data Types in POETS

Coarse-grained partition into only a few atomic signatures
! one for base values
! one for shared operations
! operations for each individual language
! syntactic sugar for each individual language

similar on the type language

Now that we have this structure in place, can we make further use of it?

12
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Products on Signatures
Annotate Syntax Trees, e.g. with source positions

annotations are not part of the actual language

annotations should be added separately (to the signature)

functions that are agnostic to annotations should not care about them

Constant Products on Signatures

Type constructor :*: of kind (* -> *) -> * -> (* -> *):

data (f :*: a) e = f e :*: a

Example

data Sig ’ e = Val Int SrcPos

| Add e e SrcPos

Sig’ ∼= Sig :*: SrcPos
13

Dealing with Annotations
Strip away annotations

stripP :: (s :*: p) a -> s a

stripP (v :*: _) = v

stripPTerm :: (Functor s)

=> Term (s:*:p) -> Term s

stripPTerm = algHom (Term . stripP)

Ignoring annotations

liftPTerm :: (Functor s)

=> (Term s -> t) -> (Term (s :*: p) -> t)

liftPTerm f = f . stripPTerm

This can be extended to annotations on signature built with sums.
14

Limitations

Propagation of annotations

How can we lift a function Term f -> Term g

to a function Term (f :*: p) -> Term (g :*: p)?

Even if function is given as algebra a :: f (Term g) -> Term g

this does not work:
a . fmap stripP is of type f (Term (g :*: p)) -> Term g

We could derive an algebra from that, but then result has uniformly
the same annotation.

Composition of algebras

Given two algebras a :: f (Term g) -> Term g and b :: g B -> B,
how do we compose them to an algebra f B -> B?

Straightforward composition homAlg b . a is of type
f (Term g) -> A

15
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An Example

Example (Syntactic Sugar)

type Exp = Core :+: Sugar

desugarAlg :: Exp (Term Core) -> Term Core

desugar :: Term Exp -> Term Core

desugar = algHom desugarAlg

16

Specialising Algebras
Problem

desugarAlg :: Exp (Term Core) -> Term Core

Algebras are too general!

We have to employ the fact that the domain consists of terms!

We need something more polymorphic!

First attempt: Signature Transformation

desugarAlg :: Exp a -> Core a

This is often too restrictive!

Each “layer” of a term over Exp has to be transformed into exactly
one “layer” of a term over Core.

! x > y ! y < x !
! x − y ! x + (−y) "

17

Contexts and Term Homomorphisms
Generalise terms to contexts

data Context f a = Term (f (Term f))

| Hole a

From signature transformations to term homomorphisms

desugarAlg:: Expa-> Context Core a

Term homomorphisms

type TermHom f g = forall a . f a -> Context g a

Term homomorphisms (a.k.a. tree homomorphisms) are the term
algebras that are defined uniformly. Hence, the polymorphism!

Applying term homomorphisms

termHom :: (Functor f, Functor g)

=> TermHom f g -> Term f -> Term g

18
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Propagating Annotations
Propagating Annotations

constP :: (Functor f)

=> p -> Context f a -> Context (f :*: p) a

constP p (Hole a) = Hole a

constP p (Term t) = Term (fmap (constP p) t :*: p)

liftPTermAlg :: (Functor g)

=> TermHom f g -> TermHom (f :*: p) (g :*: p)

liftPTermAlg f (v :*: p) = constP p (f v)

composing term homomorphisms (and algebras)

compTermHom :: (Functor g, Functor h) =>

TermHom g h -> TermHom f g -> TermHom f h

compAlg :: (Functor g) =>

(g a -> a) -> TermHom f g -> (f a -> a)

19

Terms as Contexts without Holes
Contexts with GADTs

data Cxt :: * -> (* -> *) -> * -> * where

Term :: f (Cxt h f a) -> Cxt h f a

Hole :: a -> Cxt Hole f a

type Context = Cxt Hole

type Term f = Cxt NoHole f Nothing

data Hole

data NoHole

data Nothing

! Generalise initial algebra semantics to free algebra semantics.

! Terms & initial algebras are a special case.

20

Other Extensions

monadic algebras
! using generalised sequence :: [m a] -> m [a]

(monadic) coalgebras
! generating terms ! e.g. for QuickCheck

generic functions
! e.g. size, querying, unification, matching . . .

! using generalised foldl :: (a -> b -> a) -> a -> [a] -> b

generic term rewriting
! e.g. for performing program transformations

mutually recursive data types [Yakushev et al. 2009]
! by adding additional type argument to the signatures
! can be extended to rational sets of trees (by bottom-up tree automata

on the type level)

21
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Performance Impact
Composable data types simplify function definitions, provide
flexibility, reduce boilerplate code and avoid code duplication!
But how does it affect runtime performance?

The setting

Three signatures:
! values: integers, Booleans, pairs
! core language operations: +, ∗, if, =, <, ∧, ¬, projections
! syntactic sugar: negation, −, >, ∨, ⇒

a number of different typical functions:
! type inference
! evaluation to normal form,
! “desugaring” (reduce syntactic sugar to the core language)
! computing free variables

We compare this to an ordinary implementation using standard data
types and recursive functions.

22

Runtime Comparison
slowdown factors compared to standard data types

function n=16 n=63 n=1290 n=111,279
desugarType 4.8 5.2 5.3 4.1
desugarType’ 4.2 4.9 5.0 2.5
typeSugar 3.2 3.7 3.7 4.6
desugarEval 15 11 11 15
desugarEval’ 13 10 9.8 8.8
evalSugar 12 9.4 7.4 18
desugarEvalPure 11 7.1 6.4 11
desugarEvalPure’ 6.5 4.4 4.0 3.8
evalSugarPure 7.3 7.0 4.0 3.6
freeVars 1.3 1.6 1.4 1.6
desugar 0.33 0.08 1.2 ·10−3 1.5 ·10−5

monadic functions are in blue
underlined variants use composition of algebras

23
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Applications for Compositional Data Types

Drawbacks

not as straightforward as ordinary data types

type errors are sometimes hard to decypher

memory and runtime overhead

Benefits

minimises code duplication

functions on shared structures can be shared as well

it is often more convenient to define functions

more flexible (algebras can be easily modified / lifted)

only little runtime overhead

sometimes asymptotically faster that ordinary recursive functions on
recursive data types

25
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for Parallel Programming
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2

Why Parallel Programming is Hard?

• C programmers love arrays and for-loops
• C++ programmers love vectors and iterators
• ML programmers love lists and foldl
• Haskell programmers love lists and foldr

All are inherently sequential!!

Parallel programming requires another
data structure/recursion structure

3

Structure for Parallel Programming

sum [a]    = a
sum (a:x) = a + sum x

sum [a]         = a
sum (x ++ y) = sum x + sum y

sum (Tip a)       = a
sum (Fork x y)  = sum x + sum y

Bad
(Sequential)

Good 
(Parallel)

Best!! 
(Optimally Parallel)
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4

Balanced Trees for Parallel Program

Parallel programmers loves balanced trees!!

A methodology for balanced tree is required
– How can we relate parallel algorithms 

and balanced trees?
– How can we develop programs on 

balanced trees?

5

Overview

Parallel
computation

Balanced 
Tree Structure

AlgorithmsProgramming

Derive

Develop

Underlying vehicle: 
Parametricity (Free Theorem)

7

Step 1: 
Extract Merging Operations

merge results of independent sublists
! It raises a polymorphic function 

h :: 88¯. (A → ¯) → (¯ → ¯ → ¯) → [A] → ¯
Q. Does h (¸a. a) (+) = sum hold for any h 

having this type? 

sum [a]         = a
sum (x ++ y) = sum x + sum y
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8

Step 2: 
Specify Requirements

h :: 88¯. (A → ¯) → (¯ → ¯ → ¯) → [A] → ¯
The type does not guarantee h (¸a.a) (+) = 

sum
(cf. h f (©) (a:x) = f a © f a © h f (©) x)

Requirement: Don’t discard, duplicate, 
shuffle.
, h (¸a. [a]) (++) x = x

Thm. For such h, h (¸a. a) (+) = sum
Proof. From parametricity

9

Step 3:
Construct Balanced Trees

Given x :: [A], regard t = h Tip Fork x as a 
“balanced tree representation” of x

• There are many such t:

! We can choose a balanced one

data BTree a = Tip a | Fork (BTree a) (BTree a)

1
2 3

orh Tip Fork [1,2,3] » 3
1 2

10

Summary:
Development of Balanced Tree

• sum raises a family of polymorphic functions
h :: 88¯. (A → ¯) → (¯ → ¯ → ¯) → [A] → ¯
Æ h (¸a. [a]) (++) x = x

• h Tip Fork yields a balanced tree based on 
the flexibility of choosing h
– Indeed, it is the binary search tree

• Programs on the balanced trees should be 
efficient parallel programs
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Programming on Balanced Trees

We would like to perform f :: [A] → B
! Work out f’ such that 

f’ (h Tip Fork x) = f x = f (toList (h Tip Fork x))
by fusion (deforestation) 

No parallel programming issues are there

toList (Tip a)      = [a]
toList (Fork x y) = toList x ++ toList y

12

Example: scan

Let’s derive scan’ (©©) e x = scan (©) e (toList x)

scan (©) e [a]    = [e]
scan (©) e (a:x) = e : scan (©) (e © a) x

scan’ (©) e (Tip a) = scan (©) e (toList (Tip a))
= [e]

scan’ (©) e (Fork x y)
= …
= scan’ (©) e x ++ scan’ (©) (e © reduce’ (©) x) y

13

scan on Balanced Trees

reduce’ (+) (Tip a) = a 
reduce’ (+) (Fork x y) = reduce’ (+) x + reduce’ (+) y  

4 9 6 3 2 1 7 5

13 9

22

37

3

15

12

reduce
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scan on Balanced Trees (Contd.)

4 9 6 3 2 1 7 5

13 9

22

3

15

12

scan’ (+) e (Tip a) = [e]
scan’ (+) e (Fork x y)

= scan’ (+) e x ++ scan’ (+) (e + reduce’ (+) e x) y
reduce
↓e

↓0

↓0 ↓22

↓0 ↓13 ↓22 ↓25
0 4 13 19 22 24 25 32

15

Summary

sum Balanced 
Tree Structure

AlgorithmsProgramming

Derive

Develop

Our method scales from lists to trees

scan

Shunt Contraction Algorithm
(Abrahamson et al.’89)

• Collapse a tree by 
primitive contraction 
operations called “Shunt”
– time O(n/p + log p)

• The process of collapse provides a good 
scheduling of gathering information
– expression evaluation, register allocation, 

XPath querying … 

16

Shunt
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Consider 
h :: 88¯. (A→¯) →

(¯→¯→¯→¯,  ¯→¯→¯→¯,  ¯→¯→¯→¯) →
Tree A → ¯ s.t.  h wrap connect x = x 

(connect reconstructs the tree according to Shunt)

Deriving Balanced Tree

h Leaf (NN, NL, NR) t
» ordered topology tree (Frederickson’97)
– height O(log n), connect/cut: O(log n) time

18

Purely Functional Implementations of 
Tree Accumulations (Gibbons et al.’94)

• Known implementations (Gibbons et al.’94)
Shunt contraction + stacks of pointers

• Our implementations: 
Balanced tree + upsweep + downsweep
(as similar to scan) 

2

7 5

1 3

2

9 7

8 10

18

7 9

1 3

uAcc (+) dAcc (+)

Conclusion & Future Work

Data structure
(Balanced Trees) Parallel algorithm

Parallel programming combinaters
(scan, uAcc, dAcc,…)

High-level language

Parallelization
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Outline
Motivation

Brief introduction of background
The Design of Homomorphism-based Framework on MapReduce

Case Study
Performance Evaluation

Motivation of This Talk

Show how to make programming with MapReduce easier.

Introduce an approach of automatic parallel program
generating.
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Case Study
Performance Evaluation

Programming Paradigm of MapReduce
List Homomorphism and Homomorphism Theorems

MapReduce Programming model

The Computation of MapReduce Framework

Google’s MapReduce is a parallel-distributed programming model,
together with an associated implementation, for processing very
large data sets in a massively parallel manner.

Components of a MapReduce program (Hadoop)

A Mapper;

A Partitioner that can be used shuffling data;

A Combiner that can be used doing local reduction;

A Reducer ;

A Comparator can be used while sorting or grouping;
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MapReduce Programming model
MapReduce Data-processing flow
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MapReduce Programming model

A simple functional specifcation of the MapReduce framework

Function mapS is a set version of the map function. Function
groupByKey :: {[(k , v)]} → {(k , [v ])} takes a set of list of
key-value pairs (each pair is called a record) and groups the values
of the same key into a list.
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Maximum Prefix Sum problem

The Maximum Prefix Sum problem (mps) is to find the maximum
prefix-summation in a list:

3,−1, 4, 1,−5, 9, 2,−6, 5

This problem seems not obvious to solve this problem efficiently
with MapReduce.
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List Homomorphism

Function h is said to be a list homomorphism

If there are a function f and an associated operator # such that
for any list x and list y

h [a] = f a
h (x ++ y) = h(x)# h(y).

Where ++ is the list concatenation.

For instance, the function sum can be described as a list
homomorphism

sum [a] = a
sum (x ++ y) = sum x + sum y .

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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List Homomorphism and Homomorphism Theorems

Leftwards function

Function h is leftwards if it is defined in the following form with
function f and operator ⊕,

h [a] = f a
h ([a] ++ x) = a ⊕ h x .

Rightwards function

Function h is rightwards if it is defined in the following form with
function f and operator ⊗,

h [a] = f a
h (x ++ [a]) = h x ⊗ a.
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List Homomorphism and Homomorphism Theorems

Map and Reduce

For a given function f , the function of the form ([[·] ◦ f ,++ ]) is a
map function, and is written as map f .
————————————————————————————
The function of the form ([id ,#]) for some # is a reduce function,
and is written as reduce (#).

The First Homomorphism Theorem

Any homomorphism can be written as the composition of a map
and a reduce:

([f ,#]) = reduce (#) ◦map f .
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List Homomorphism and Homomorphism Theorems

The Third Homomorphism Theorem

Function h can be described as a list homomorphism, iff ∃ # and
∃ f such that:

h = ([f ,#])

if and only if there exist f , ⊕, and ⊕ such that

h [a] = f a
h ([a] ++ x) = a⊕ h x
h (x ++ [b]) = h x ⊗ b.

The third homomorphism gives a necessary and sufficient condition
for the existence of a list homomorphism.

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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A homomorphism-based framework wrapping MapReduce

To make it easy for resolving problems such as mps by
MapReduce. We using the knowledge of homomorphism especially
the third homomorphism theorem to wrapping MapReduce model.
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A homomorphism-based framework wrapping MapReduce

Basic Homomorphism-Programming Interface

filter :: a → b
aggregator :: b → b → b.

The implementlation on Hadoop
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A simple example of using this interface for computing the sum of
a list

The implementlation on Hadoop
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Case Study

A homomorphism-based framework wrapping MapReduce

Programming Interface with Right Inverse

fold :: [a] → b
unfold :: b → [a].

The implementlation on Hadoop
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A homomorphism-based framework wrapping MapReduce

A simple example of using this interface for computing the sum of
a list

The implementlation on Hadoop
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Outline
Motivation

Brief introduction of background
The Design of Homomorphism-based Framework on MapReduce

Case Study
Performance Evaluation

Automatic Parallelization
Case Study

A homomorphism-based framework wrapping MapReduce

Requirements of using this interface in addition to the right-inverse
property of unfold over fold .

Both leftwards and rightwards functions exist

fold([a] ++ x) = fold([a] ++ unfold(fold(x)))
fold(x ++ [a]) = fold(unfold(fold(x)) ++ [a]).

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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The implementation of homomorphism framework upon
Hadoop

To implement our programming interface with Hadoop, we need to
consider how to represent lists in a distributed manner.

Set of pairs as list

We use integer as the index’s type, the list [a, b, c , d , e] is
represented by {(3, d), (1, b), (2, c), (0, a), (4, e)}.

Set of pairs as distributed List

We can represent the above list as two sub-sets
{((0, 1), b), ((0, 2), c), ((0, 0), a)} and {((1, 3), d), ((1, 4), e)}, each
in different data-nodes
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Performance Evaluation
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Case Study

The implementation of homomorphism framework upon
Hadoop

The first homomorphism theorem implies that a list
homomorphism can be implemented by MapReduce, at least two
passes of MapReduce.

Defination of homMR

homMR :: (α → β) → (β → β → β) → {(ID, α)} → β
homMR f (⊕) = getValue ◦MapReduce mapper2 reducer2

◦MapReduce mapper1 reducer1
where

mapper1 :: (ID, α)) → [((ID, ID), β))]
mapper1 (i , a) = [((pid , i), b)]
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Outline
Motivation
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Performance Evaluation

Automatic Parallelization
Case Study

The implementation of homomorphism framework upon
Hadoop

Defination of homMR

reducer1 :: (ID, ID) → [β] → β
reducer1 ((p, j), ias)) = hom f (⊕) ias

mapper2 :: ((ID, ID), β) → [((ID, ID), β)]
mapper2 ((p, j), b) = [((0, j), b)]

reducer2 :: (ID, ID) → [β] → β
reducer2 ((0, k), jbs) = hom (⊕) jbs

getValue {(0, b)} = b

Where, hom f (⊕) denotes a sequential version of ([f ,⊕]).
Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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The leftwards and rightwardsfunction

Derivation by right inverse

leftwards([a] ++ x) = fold([a] ++ unfold(fold(x)))
rightwards(x ++ [a]) = fold(unfold(fold x) ++ [a]).

Now if for all xs,

rightwards xs = leftwards xs, (1)

then a list homomorphism ([f ,⊕]) that computes fold can be
obtained automatically, where f and ⊕ are defined as follows:
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Motivation

Brief introduction of background
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Case Study
Performance Evaluation

Automatic Parallelization
Case Study

The leftwards and rightwardsfunction

Derivation by right inverse

f a = fold([a])
a⊕ b = fold(unfold a++ unfold b).

Equation (1) should be satisfied.

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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Motivation
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Performance Evaluation

Automatic Parallelization
Case Study

Programming with this homomorphism framework
MPS

A sequential program

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P

163



Outline
Motivation

Brief introduction of background
The Design of Homomorphism-based Framework on MapReduce

Case Study
Performance Evaluation

Automatic Parallelization
Case Study

Programming with this homomorphism framework
MPS

A tupled function
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MPS

(mps ! sum) [a] = (a ↑ 0, a)
(mps ! sum) (x ++[a]) = let (m, s) = (mps ! sum) x in (m ↑ (s +

We use this tupled function as the fold function. The right inverse
of the tupled function, (mps ! sum)◦:

(mps ! sum)◦ (m, s) = [m, s −m]

Noting that for the any result (m, s) of the tupled function the
inequality m ! s hold,
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Performance Evaluation

The implementation of homomorphism framework upon
Hadoop
performance tests

Environment:Hardware

COE cluster in Tokyo University which has 192 computing nodes.
We choose 16 , 8 , 4 , 2 and 1 node to run the MapReduce-MPS
program. Each node has 2 Xeon(Nocona) CPU with 2GB RAM.

Environment:Software

Linux2.6.26 ,Hadoop0.20.2 +HDFS

Hadoop configuration: heap size= 1024MB

maximum mapper pre node: 2

maximum reducer pre node: 2

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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Performance

The input data
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Performance

The time consuming of calculate 100 million-long list

(SequenceFile, Pair < Long >):
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Performance

The speedup of 2-16 nodes:
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Performance
Comparison of 2 version SUM

Comparison of 2-16 nodes:
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Performance
Conclusions

The time curve indicate the system scalability with the number of
computing nodes. The curve between x-axis 2 and 8 has biggest
slope, when the curve reaches to 16, the slope decreased, that is
because when there are more nodes, the overhead of
communication increased. Totally, the curve shows the scalability
is near-linear.
Overhead of 2 phases Map-Reduce.
Overhead of Java reflection.
Not support local reduction now (not implemented yet).
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Motivation

Brief introduction of background
The Design of Homomorphism-based Framework on MapReduce
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Performance Evaluation

The end
Questions?

?

Yu Liu A Homomorphism-based MapReduce Framework for Systematic P
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Specification and Implementation of ERP
requirements

Mikkel Jønsson Thomsen
jonsson@diku.dk

Department of Computer Science
University of Copenhagen

January 12, 2011

Background

Enterprise Resource Planning (ERP) systems is a category of systems
designed to aid the management of resources in a company. The ERP
category include systems like Microsoft Dynamics NAV / AX, SAP.

Major ERP systems are centered around the Double-Entry Bookkeeping
financial model, and are strongly tied to the database representation of
data.

In 2004, 91% of the top 500 danish companies employed an ERP system.
40% were using an MS product, 23% a SAP product.

2

Modeling ERP requirements

The extraction and formulation of requirements for an ERP system is a
very subjective discipline that often rely on the individual experts with
extensive contextual knowledge of the industry (Rikhardsson et al., 2004;
de Carvalho et al., 2009).

Deploying an ERP system is a huge task that scales with the size of the
company deploying it. E.g. it is estimated that the cost of implementing
an ERP system represents 1-6% of a company’s turnover and that it takes
an average of two to three years to complete.

3
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The REA accounting model and the POETS ERP
framework

McCarthy proposed the REA accounting model in 1982:

“An Event is some Agent(s) acting on some Resource(s)”.

The Process Oriented Event-driven Transaction System
(POETS)(Henglein et al., 2009) is an implementation of this model.

“Shortening the distance between requirements and their formal expression
for rapid system prototyping, implementation, and continuous adaptation
to changing processes and information needs”

POETS(Data Model ,Work Flows) => ERP System

4

Architectural overview of POETS
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5

Formulation of a transaction process

Originates from a live case study.

Create and Negotiate sales quote, including payment terms (Fixed
price or hourly rate).

Enter sales contract (binding).

Select DJ.

DJ plays the job.

DJ must receive a payment for the job. Either directly from the
customer or from the company

Customer is invoiced the amount according to the payment terms.

Company receives and registers the incoming payment.

6
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Modeling the Sales Process

What information is needed to model this?

3 Agents (Company, Customer, DJ).

Information about the job, including date, size, type, place, etc.

Payment details

What is needed to formalize this ontological data model?

Entities (Records).

Fields of Entities or simple types.

Inheritance between entities.

Compact, easily readable syntax for formalization.

10

Formalizing an ontology language

S ::= EntityName1 SupQuan EntityName2 .

| EntityName1 PropQuan EntityName2 PropDecl .

| EntityName has comments Cstring .

| EntityName is abstract .

| EntityName RuleExp .

EntityName ::= [A− Z ] ([A− Za− z][1− 9])∗

SupQuan ::= is a | is an | is in

PropQuan ::= SingleQuantity | MultipleQuantity

PropDecl ::= called FieldName | named FieldName | ε
FieldName ::= [a− z] [A− Za− z]∗

Cstring ::= ”([A− Za− z][\n!. :; ?..])∗ ”

RuleExp ::= validates ruleset F | is validated by F

SingleQuantity ::= has a | has an

MultipleQuantity ::= has a list of

11

Data Model for Contract

DJContract i s a Cont rac t .
DJContract has a Company .
DJContract has a DJ c a l l e d d j .
DJContract has a Customer .
DJContract has a F i x e dP r i c e c a l l e d d j S a l a r y .
DJContract has a l i s t o f GearPackage c a l l e d gea r .
DJContract has a EventType .
DJContract has a i n t c a l l e d s i z e .
DJContract has a dateTime c a l l e d s t a r t .
DJContract has a dateTime c a l l e d t e n t a t i v eEnd .
DJContract has an Addres s c a l l e d even tAdd r e s s .

12
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Formalizing the work flow

Using multiparty contracts (Hvitved, 2009)

Identify “Functions” and “Events” in the work flow.

Identify deadlines and other temporal parameters.

13

Conclusion

Extracting / uncovering even the most basic requirements for ERP
systems is not a trivial task.

Specialization of the POETS framework with regards to the requirements.
This includes User Interfaces.

Specify a knowledge representation language for an ERP data model that
is:

Easily readable.

Limited to the domain for which it is used.

Strong enough to express a data model for an ERP system.

Future work
Deployment of a POETS implementation in a live setting will hopefully
reveal whether the customizations are indeed easier to perform.

15
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Marker-directed optimization of 
UnCAL graph algebra revisited: 
Optimizing bidirectional graph 

transformations

Marker-directed optimization of 
UnCAL graph algebra revisited: 
Optimizing bidirectional graph 

transformations

Soichiro Hidaka
National Institute of Informatics, Japan

The Fourth DIKU-IST Joint Workshop on Foundations of Software
12 Jan. 2011

2

Bidirectional Transformation

backward

modify

t’

forward t

s’

s

3

Graph BT Example

backward

forward

• Replace ‘a’ by ‘d’ and contacts ‘c’

1

3

5

b

d

d

d
2

D 7
B4

b

d

1

3

5

b

a

a

a
2 4

b

D
7

B
6

c
Insertion

Renaming
Deletion

d
forward
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4

Background

• Performance is one of the big issues
– We are highly motivated for optimization

• Preliminary framework for today’s 
presentation had been mostly 
implemented

5

A Compositional Framework for 
Bidirectional Model Transformation

Model Transformation in UnQL+[1]
(Compositional!and!Functional)

Model Transformation in UnQL+[1]
(Compositional!and!Functional)

UnCAL graph!algebra
(Graph!Construction!and!Structural!Recursion)

UnCAL graph!algebra
(Graph!Construction!and!Structural!Recursion)

desugaring
(incl.!editing!primitives)!

to!core!language

desugaring
(incl.!editing!primitives)!

to!core!language

Bidirectional Interpreter[2]
•Bidirectionalization
•Fusion!Optimization

Bidirectional Interpreter[2]
•Bidirectionalization
•Fusion!Optimization

source
model
source
model

target
model
target
model

Validation Validation

[1] SAC2009
[Overview] 

ICSE2009
NIER Tr.

[2] ICFP2010

6

UnCAL Structural Recursion
in General Form

f {} =!{}

f {l:G} = !t(l,G)@!f G

f (G1!G2) =! (f G1)!(f G2)

f =!rec(!($l,$g).t($l,$g))
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7

Example: a2d_xc

• Replace ‘a’ by ‘d’ and contracts ‘c’

a2d_xc($db) =
rec("($l,$g).!if!$l=a!then!{d:&}

else!if!$l=c!then!{#:&}
else!!!!!!!!!!!!!!{$l:&})($db)

8

Core UnCAL Language

e ::= {} | {L : e} | e ! e | &x := e | &y | ()
| e $ e | e @ e | cycle(e) { constructor }
| $g { graph variable }
| if l = l then e else e { conditional }
| rec("($l,$g).e)(e) {structural recursion application }
l ::= a { edge label }
| $l { label variable }

9

Optimization by forward 
transformation itself

• Non-necessary recursion can be 
eliminated

• We go back to bidirectional aspect in 
the conclusion

f {l:G} = !t(l,G)@!f G
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Structural recursion and markers
map f (x:xs)

= (f x) : map f xs

rec e {x:xs}
= e(x,xs)@rec e xs

f x2 map f xs

e(x,xs)

f x1

rec e xs

11

g1

g2

g

&x1 &x2

&y1 &y2
&y1 &y2

g1

g2

&x1 &x2

# #@

Graph Constructors
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& ()

%
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&y1 &y2

&y1 &y2
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g1 g2 g
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&y1 &y2 &x.&y1 &x.&y2
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&

&yl

g1 g1
{_:_} g

&

&l

g1 g2 g

# ## #&x1 &x2 &x1 &x2

&x1&x2

!

12

g1

g2

g

&x1 &x2

&y1 &y2
&y1 &y2

g1

g2

&x1 &x2

# #
@

Graph Constructors

()
%

gg0

&y1 &y2

&y1 &y2

&y1 &y2

##cycle

g1 g2 g

&x1 &x2 &y1 &y2 &x1 &x2 &y1 &y2

$ g&x g0

&y1 &y2 &x.&y1 &x.&y2

:=

&y
&

&y
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13

Revisiting marker analysis

• Mainly run-time analysis is mentioned
– Avoid evaluating unnecessary 

subexpressions
• We can now statically compute and 

further simplify the transformation 
itself

14

Revisiting original marker analysis

[Buneman+98] 
TR version

15

Computation of markers
[Hidaka+08]
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Static estimation of markers for 
structural recursion

• Computation of structural recursion 
itself requires static computation of 
markers

17

Fusion rules and output marker 
analysis

• Removal of intermediate results in  
successive application of e1structural 
recursion.

2 1 2 1

2

( ) ( ) ( ( ) )

( , )

rec e rec e rec rec e e

e l t t

!

if  does not depend on 

! !

for arbitrary  

2 1

2 1 1

2

( ) ( )

( ( , ). ( )( ( , )@ ( )( )))

( , )

rec e rec e

rec l t rec e e l t rec e t

e l t

!!

!

• If you know statically guarantee that e1 does not produce any 
output marker, then the second rule fall backs to first rule, 
opening another optimization opportunities.

18

Non-recursive query

• Join translated to nested recursion
– Finite step traversal only
– Body of rec does not have recursion 

which means the body does not have 
output marker
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19

Join

• Want to return 
subgraphs under b
with sibling c cb

& $db

xb yb cb zb
sfun f({$l,$tl})=
sfun fc({c:$tc}) =
sfun fb({b:$tb}) = $tb
in fb($tl)

in fc($tl)
in f($db) introduction of id function

uses of common 
variables 
implements join

20

Other rules for rec

[Buneman+00]

1 2 1 2

1

1 1

1 2 1

( )({}) {}
( )({ : }) ( , )@ ( )
( )( ) ( )( ) ( )( )

( )(& : ) & ( )

{& ,...,& }

( )(& ) (& : & & ,...,& : & & )
( )() ()

( )( ) ( )( ) (

p

p p

rec e
rec e l d e l d rec e
rec e d d rec e d rec e d
rec e x d x rec d

z z e DB

rec e y z y z z y z
rec e

rec e d d rec e d rec

!
!

" ! "
! !

! #

! ! !
!

$ ! $

"

" "

!
!!

2

1 2 1 2

)( )
does not occur free in 

( ( , ). )( @ ) ( )( )@ ( )( )
does not occur free in 

( ( , ). )( ( )) ( ( )( ))

e d
t e

rec l t e d d rec e d rec e d
t e

rec l t e cycle d cycle rec e d

!

!

!

!

21

Static marker analysis

• How 
about 
“residual”
markers?

1 2

1 2@

d DB d DB

d d DB

# #

#

" #
# !

"
!

g1

g2

g

&x1 &x2

&y1 &y2
&y1 &y2

g1

g2

&x1 &x2

# #
@

&z1 &z2 &z1 &z2
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Bisimulation equivalence

• Unreachable parts may be disregarded

1

3

5

b

a

a

a
2 4 c

6

c

d

&

7 8d

1

3

5

b

a

a

a
2 4 c

6

c

d

&

23

Residual marker

• Idiom for 
projection

1

1 2 1

::

@

e DB

e e e
%

&

"

g1

g2

g

&x1 &x2

&y1 &y2
&y2 &y3

g1

g2

&x1 &x2

#
@

&z2 &z3 &z3&z2

2

1
1 2 1 2

1 2 1

:: ::

@

e DB e DB

e e e

' ! %

&

#"
!# # #

Correct if the output 
markers in e1 are 
eliminated!

24

Example fusion
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After desugaring

• composition of rec

26

After fusion rule applied

• Fusion rule 1 applied
• Hand optimization required
• We could “plug” the 

expression in the output 
marker of the left hand side 
of @

27
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Plugging expression to output 
marker expression

• Further, we could eliminate the 
output marker expression if it will not 
be connected to other input nodes

{ : & }@(& : ) { : }l y y e l e! &

29

Plugging rule for complex case: 
cycle

1 2 2 1

:: ( \ )

( )@(& : & : ) ( [ /& ])@(& : )

e DB y

cycle e x e y e cycle e e y x e

(

! $ ! & !

"
# # "

30

Preliminary performance results

• Customer to Order composed by selection
– Without rewriting

• Fwd evaluation took 0.05 CPU seconds
• Bwd evaluation took 2.58 CPU seconds  

– Rewrite only to 2nd rule for fusion
• Fwd evaluation took 0.06 CPU seconds
• Bwd evaluation took 2.67 CPU seconds

– After adding rewriting to lead to 1st rule of fusion
• Fwd evaluation took 0.04 CPU seconds
• Bwd evaluation took 1.30 CPU seconds
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Conclusion

• Static marker computation defined to 
exploit new optimization opportunity.

• Further optimization based on “plugging”
expression reasoned about.

• Future Work
– Canonical form

• &x1 := e1, &x2 := e2, ..., &xn = en

– Other reasoning about what we can do statically
– Analyze impact to reflectable updates
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1

The Fourth DIKU-IST Joint Workshop on Foundations of Software

(Ongoing work)

Graph Transformation

Natural direct representation of real world entities

2

WWW, GIS, images, videos, social networks,
Biological information, chemical information, 
Models in software engineering and databases

Graphs:

Use of Graphs:
Transformations of one graph into another.

3

Application: Class2RDB
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UnQL:  Graph Querying

• Easy to use:  select ... where ...

• Has a core graph algebra for arbitrary graph construction

• Use structural recursion for manipulating  graphs

• Widely used in various applications[SAC’09][ICSE’09 NIER][ICFP’10]... 

4

UnQL [VLDB Journal ‘00]  is a

well-defined graph query language

UnQL one or more graphs    → one graph

SQL one or more relations → one relation

XQuery zero or more items     → zero or more items

Goals

an extension of UnQL

5

! A uniform mechanism for both querying and updating.  
→ all updates are transformed into structural recursion.

query

update

UnQL+ : a graph transformation language

Edge-labelled Graphs

6

g  = {a :  {a : g1}} ∪ {b : {a : g1}} ∪ {c : g2}
g1 = {d : {}}
g2 = {c : g2}

g1

g2
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Graph Equivalence based on Bisimulation

7

UnQL expressions are bisimulation generic.

f is bisimulation generic if g1≡g’1, g2≡g’2, ... implies
f(g1,g2,...)≡f(g’1,g’2,...)

Graph Representation:  An Example

8

A Class Diagram:

9

Graph Representation:  An Example
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Structural Recursion: Manipulating Graphs

Structural Recursion:

f({})           =  {}        

f({l : g})    = e(l,g)@ f(g)

f(g1 ∪ g2) = f(g1)  ∪  f(g2) 

Or written as:

sfun  f({l : g}) = e(l,g)@ f(g)

sfun a2d_xc ({$l : $g}) = if  $l = a  then {d : a2d_xc($g)}
                                        else if  $l = c  then a2d_xc($g)
                                        else  {$l : a2d_xc($g)}

11

Structural Recursion:  An Example

12

Structural Recursion in UnQL

f(g1 ∪ g2) = f(g1)  ∪  f(g2) 

• Can focus on one-dimensional graphs w.l.o.g.
      each node has at most one outgoing edge

• No accumulation parameters
    can not formulate one flat mutual recursion
     →nested structural recursion 
　　　cannot refer outer sr function in nested sr
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How to extract all persistent classes ?
13

select $class where
{Association.(src|dest).Class: $class} in $db,
{is_persistent.Boolean.true:_} in $class 

14

Graph Querying in UnQL

15

let sfun h1({A:$v}) = h2($v)
           |  h1({$l:$v}) = {}
     sfun h2({s:$v}) = h3($v)
           |  h2({d:$v}) = h3($v)
           |  h2({$l:$v}) = {}
     sfun h3({C:$v}) = let sfun h5({i:$u}) = h6($u)
                                              |  h5({$l:$u}) = {}
                                         sfun h6({B:$u}) = h7($u)
                                              |  h6({$l:$u}) = {}
                                        sfun h7({t:$u}) = $v
                                              |  h7({$l:$u}) = {}
                                    in h5($v)
           |  h3({$l:$v}) = {}
in h1($db)

select $class where
{Association.(src|dest).Class: $class} in $db,
{is_persistent.Boolean.true:_} in $class 

s1 s2 s3 s4
A s

d
C

s5 s6 s8s7
i B t
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17

Language Design Policy 
Two choices.

1. Updates are syntactically distinct from queries.
+ simple and clear semantics.
+ easier static analysis (e.g. typecheck).
- less expressiveness.
e.g. SQL, Flux

2. Update operations may appear within query exp.
- complex semantics. 
- difficult static analysis.
+ more expressiveness.
e.g. XQuery!, XQueryU

18

Graph deleting in UnQL+

delete Association.(src|dest).Class → $u
where   {is_persistent.Boolean.true:_} in $u 
in          $db

How to delete all persistent classes ?
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replace _*.Class.name.String → $u
by         {(“class_” + $name) : {}}
where   {$name:_} in $u
in          $db

19

class_Person class_Address class_Phone

How to prefix every 
name of the class
by “class_”?

20

Graph extending in UnQL+

extend _*.Class → $u
with   {date: {“2011/1/12”:{}}}
in          $db

How to add date information to each class ?

date

2011/1/12

date2011/1/12 date 2011/1/12

21

Syntax of UnQL+ for updating 
replace r → tgt [under var] by e 
where bs in e

extend r → var with e
where bs in e

delete r → tat [under var] 
where bs in e

replace r → tgt [under var] by {}
where bs in e

tgt ::= var | {l:var} | {var:var} | {r:var} 
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replace r → $v by e1 
where bs in e2

replace r → {l:$u}  [under $v] by e1 
where bs in e2

replace r1 → {r2:$u}  [under  $v] by e1 
where bs in e2

$v e1 satisfies bs ...
r $v

$u

r
...

$v
r

e1 satisfies bs

...
$v

$u

r1

r2

...
$v

r
e1 satisfies bs

replace r → {$l:$u}  [under $v] by e1 
where bs in e2

...

l

$v
$u

r
...

$v
r

e1 satisfies bs$l

23

Snapshot Semantics

replace a →$v by $u 
where {a.b: $u} in $db
in $db

SQL, XQuery!, Flux, XQueryU, ...

Two logical phases of processing:

1. specifies nodes to be updated (snapshot)
2. updates are applied to the nodes

a

bc

$db
a

b c

24

$db

ee

ee

5

6

extend _*.(a | c) → $t with  {ee:{}} 
in $db

Execution model for extend-exp.
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Execution model for replace-exp.

$db

ee

ee

5

6

replace _*.(a | c) → $t by {ee:{}} 
in $db

b

f ({b:g1} ∪ {a:{b:g1}})
= f({b:g1}) ∪  f({a:{b:g1}})

g1

The first matching node
from the root is replaced.

26

Mapping to Structural Recursion

How to preserve the context (unchanged part)

extend r → var with e 
where bs in e

•  Constructing a DFA for r
• Associating a sr function with each state

sfun h({l:g}) = {l : ...}

replace r → tgt [under $v] by e 
where bs in e

27

Mapping extend-exp. into SR
extend r → $v with e1 
where bs in e2

A DFA for r: (Q,Σ, δ, q0, F)

let sfun h0({l0:$v})  = ...
      ...
     sfun hi({l0:$v})  = {l0: hi ($v)}
        |    ...
        |     hi({lk:$v})  = {lk: hi ($v) ∪ select e1 where bs} 
        |    ...
        |     hi({$l:$v}) = {$l: hi ($v)}
     sfun ...
      ...
in s1($db)

l0

lk

!

Q = {q0,...,qN} Σ = {l0,...,lM,!}
hi : associated with δ(qi, lj)lj δ : Q × Σ → Q δ(qi,lk) ∈ F
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extend _*.(a | c) → $t with  {ee:{}} 
where {b:$v} in $t
in $db
let 
  sfun s1({a:$t})  = {a: s2($t) ∪ select {ee:{}}
                                                    where {b:$v} in $t} 
        |  s1({c:$t})  = {c: s2($t) ∪ select ee:{}}
                                                    where {b:$v} in $t}
        |  s1({$l:$t}) = {$l: s1($t)}
  sfun s2({a:$t})  = {a: s2($t) ∪ select {ee:{}} 
                                                    where {b:$v} in $t} 
        |  s2({c:$t})  = {c: s2($t) ∪ select {ee:{}}
                                                    where {b:$v} in ($t)}
        |  s2({$l:$t}) = {$l: s1($t)}
in s1($db)

29

replace _*.a -> $u by {ee:{}} 
where   {$l1:$g1} in $u, 
             {$l2:$g2} in $g1, 
             $l1=$l2
in          $db
let sfun s1({a:$u})  = {a: let sfun h1({$l1:$g1}) = 
                                               let sfun h2({$l2:$g2}) = if $l1=$l2 
                                                                                                                                then {ee:{}}
                                                                                     else s2($u) 
                                               in h2($g1)
                                         in h1($u)}    
           |  s1({$l:$u}) = {$l: s1($u)}
     sfun s2({a:$u})   = ...
         ....
in s1($db)

30

replace _*.a -> $u by {ee:{}} 
where   {$l1:$g1} in $u, 
             {$l2:$g2} in $g1, 
             $l1=$l2
in          $db

let sfun s1({a:$u})  =
               if isEmpty(select {“found”:{}} 
                                 where {$l1:$g1} in $u, {$l2:$g2} in $g1,  $l1=$l2)
               then {a:s2($u)}
               else {a: select {ee:{}}
                            where {$l1:$g1} in $u, {$l2:$g2} in $g1,  $l1=$l2}
           |  s1({$l:$u}) = {$l: s1($u)}
     sfun s2({a:$u})   = ...
        ...
in s1($db)
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replace _*.a -> {d:$u} by {ee:{}} 
where   {$l1:$g1} in $u, 
             {$l2:$g2} in $g1, 
             $l1=$l2
in          $db

sfun s1({a:$v})  = let sfun h({d:$u}) = 
                                                if isEmpty(select {“found”} where ...)
                                                then s2($v)
                                                else {a: select {ee:{}} where ...}
                                         |  h({$l’:$u}) = s2($v)
                              in {a:h($v)}
      |  s1({$l:$v}) = {$l: s1($v)}
sfun s2({a:$v})   = let sfun h({d:$u}) = ...
      |  s2({$l:$v}) = {$l:s1($v)}

a
d
b
b

b a
eeb$u

32

sfun s1({a:$v})  = let sfun h({d:$u}) = 
                                                  if isEmpty(select {“found”} where ...)
                                                  then s2($v)
                                                  else {a: select {ee:{}} where ...}
                                          | h({$l’:$u}) = s2($v) in {a:h($v)}
      |  s1({$l:$v}) = {$l: s1($v)}
sfun s2({a:$v})   = let sfun h({d:$u}) = ...
      |  s2({$l:$v}) = {$l:s1($v)}
sfun s1({a:$v})  = {a:h($v)}
      |  s1({$l:$v}) = {$l: s1($v)}
sfun h({d:$u}) = if isEmpty(select {“found”} where ...)
                            then {d:s1($u)} 
                            else {a: select {ee:{}} where ...}
sfun h({a:$u}) = {a:h($u)}
sfun h({$l:$u}) = {$l:s1($u)}
sfun s2({a:$v})   = {a:h($v)}
      |  s2({$l:$v}) = {$l:s1($v)}

s2($v)=s2({d:$u})={d:s1($u)}s2($v)=s2({$l’:$u}) s.t. $l’ ≠ d
          =s2({a:$u})={a:h($u)}
          | s2({$l:$u})={$l:s1($u)}

33

replace _*.a -> {d:$u} under $v by {ee:{}} 
where   {$l1:$g1} in $u, 
             {$l2:$g2} in $v, 
             $l1=$l2
in          $db

sfun s1({a:$v})  = let sfun h({d:$u}) = 
                                                if isEmpty(select {“found”} where ...)
                                                then s2($v)
                                                else {a: select {ee:{}} where ...}
                                         |  h({$l’:$u}) = s2($v)
                              in {a:h($v)}
      |  s1({$l:$v}) = {$l: s1($v)}
sfun s2({a:$v})   = let sfun h({d:$u}) = ...
      |  s2({$l:$v}) = {$l:s1($v)}

a
d
c

c
a
eec$u

$v
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select $tables where
  $tables in
    (select $tables where
       {Class:$class} in (select $asc where
                            {Association.(src|dest):$asc} in $db),
       {is_persistent.Boolean:true} in $class,
       $dests in (select {Class:$dest} where
                   {(src_of.Association.dest.Class)+:$dest} in $class),
       $related in ({Class:$class} U $dests),
       $cols in (select {cols:{Column:{name:$cname,type:$ctype}}} where
                   {Class.attrs.Attribute:{name:$cname,type:$ctype}} in $related),
       $tables in (select {Table:{name:$cname} U $cols} where
                     {name:$cname} in $class),
       $tables in (extend Table -> $table with $pkeys U $fkeys in $tables where
                        {cols:$cols} in $table,
                        {Column.name.String:{$cname:{}}} in $cols,
                        $pkeys in (select {pkey:$cols} where
                                  {attrs.Attribute:
                                     {is_primary.Boolean:true,
# #                   name.String:{$pname:{}}}} in $class,
                         $cname = $pname),
                     $fkeys in (select {fkeys:{Fkey:{cols:$cols, ref:$dcname}}} where
                                  {Class:{is_persistent.Boolean:true,
                                          attrs.Attribute.name.String:{$aname:{}},
# # # #          name:$dcname}} in $dests,
                                  $cname = $aname))),
  $tables in (replace Table.fkeys.Fkey.ref -> $ref by {Table:$table} in $tables where
                   {Table:$table} in $tables,
                  {String:{$rname:{}}} in $ref,
#         {name.String:{$tname:{}}} in $table,
                   $tname = $rname)

Class2RDB in UnQL+

35

replace Table.fkeys.Fkey.ref -> $ref by {Table:$table} in $tables 
where {Table:$table} in $tables,
           {String:{$rname:{}}} in $ref,
#       {name.String:{$tname:{}}} in $table,
           $tname = $rname

36

Why DFA instead of NFA

replace _*.(a | c)->$t by  {ee:{}} in $db

let 
   sfun h1({a:$t})  = {a: {ee:{}}} 
         |  h1({c:$t})  = {c: {ee:{}}}
         |  h1({$l:$t}) = {$l: h1($t) ∪ h3($t)}
 and 
   sfun h2({$l:$t}) = {$l:$t}
 and
  sfun h3({a:$t})   = {a: {ee:{}}}
        |  h3({c:$t})   = {c: {ee:{}}}
        |  h3({$l:$t})  = {$l:$t}
in h1($db)

A NFA for_*.(a | c)
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Why DFA instead of NFA

replace _*.(a | c)->$t by  {ee:{}} in $db

let 
   sfun h1({a:$t})  = {a: {ee:{}}} 
         |  h1({c:$t})  = {c: {ee:{}}}
         |  h1({$l:$t}) = {$l: h1($t) ∪ h3($t)}
 and 
   sfun h2({$l:$t}) = {$l:$t}
 and
  sfun h3({a:$t})   = {a: {ee:{}}}
        |  h3({c:$t})   = {c: {ee:{}}}
        |  h3({$l:$t})  = {$l:$t}
in h1($db)

38

let 
   sfun h1({a:$t})  = {a: {ee:{}}} 
         |  h1({c:$t})  = {c: {ee:{}}}
         |  h1({$l:$t}) = {$l: h1($t) ∪ h3($t)}
 and 
   sfun h2({$l:$t}) = {$l:$t}
 and
  sfun h3({a:$t})   = {a: {ee:{}}}
        |  h3({c:$t})   = {c: {ee:{}}}
        |  h3({$l:$t})  = {$l:$t}
in h1($db)

$db={b:{b:{c:{d:{}}}}}

h1({b:{b:{c:{d:{}}}}}) 
={b: h1({b:{c:{d:{}}}}) 
             ∪ h3({b:{c:{d:{}}}})}
= ...

replace _*.(a | c)->$t by  {ee:{}} in $db

39

Conclusion

Adding graph updating into UnQL

• Monolithic operation for both querying and updating
 optimization friendly (fusion)

• bisimulation generic
• RPP → DFA → structural recursion

All update expressions can be translated into structural recursion
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41

Remaining work

• Mapping replace-exp. into sr without isempty.
    isempty introduces transitive closure.

- use schema information (or, path-index). 
- sr extension with accumulation parameters.
- use new graph algebra with simple sr.

42

Thank you
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SEMANTIC STRUCTURES OF 
BIDIRECTIONAL PROGRAMMING

Kazuyuki Asada      (The University of Tokyo)
12 January, 2011

Abstract

! This talk is about ...

some properties on some constructors 
(like products, coproducts, …) 
in Bidirectional Programming.

Part I

Introduction:

Bidirectional Programming
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Bidirectional Program

Source
Data

Target
View

Operation
on View

Bidirectional
Transformation

s

f<(s, h(f> s))

f> s
f>

f<

p

h(f> s)

Input

Output 

Source
Update

Bidirectional Programming Language

! Bidirectional Programming Language as Domain-
Specific Language
! Target: Relational DB, String, Tree, Graph, …

! Bidirectional Programming in General-Purpose 
Language
! in Haskell, Ocaml, …

Example of Bidirectional Program

! Bidirectional Sort 
(assuming that veiw-operations keep list length)

! bsort> : List int -> List int = foldl insert []
! bsort<: List int List int -> List int

! Algorithm: an input [2 4 1 5] → its complement:
([], []) → ([2], [0]) → ([2 4], [1 0])
→ ([1 2 4], [0 1 0]) → ([1 2 4 5], [3 0 1 0])

! bsort< [2 4 1 5] l =         -- using [3 0 1 0]
[(l-3-0-1).0     (l-3-0). 1     (l-3).0     l.3 ]

! bsort< [2 4 1 5] swap(bsort> [2 4 1 5]) = [1 4 2 5]
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Example of Bidirectional Program

name … age … address
Taro … 23 … Asakusa
Hana … 18 … Hongo

name age

Taro 23

Hana 18

name address

Taro Asakusa

Hana Hongo

name … age … address
Taro … 20 … Asakusa
Hana … 18 … Hongo

name age

Taro 20

Hana 18

name address

Taro Asakusa

Hana Hongo

Source DB GUI view of Abstracted Data

Stability (GetPut law)

s

f<(s, f> s)

f> s
f>

f<

id

f> s

f = (f>, f<) : stable    if    f<(s, f> s) = s

Compositional Programming

! Basic one: Sequential Composition

If f and g are stable, so is f;g .

A

A

B

B

B

B

C

C
f = (f>, f<) g = (g>, g<)

f ; g = 
(f> ; g>,  
λ a c .  f< a (g< (f> a) c) 

A

A

C

C
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Duplication-by-Split

! Dual view, but single update:              [M. Takeichi]

If f and g are stable, so is <f, g>.

C

C

A

A

C

C

B

B 
f = (f>, f<) g = (g>, g<)

<f , g> = 
(<f>, g> > ,
λ a (b, c) .  

if c = π2(f> a) then f< a b 
else if b = π1(f> a) then g< a c
else a )

C

C

A B

A B

or

(B, C are assumed to be flat types, i.e., have equality predicates.)

Part II

(Informal) Semantics of Bidirectional Programming:

Monoidal Product, Trace, Product, and Coproduct

! Design choices for bidirectional programming:
! Arbitrary typing?         or         “Diagonally” typing?

! With or without stability law, or other laws such as 
PutGet.

! Here we consider three categories:
Bi( ),  BiΔ( ),  BiΔs ( )

Categories of Bidirectional Programs

A

A’

B

B’

A

A

B

B
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Bi( )

! For a cartesian category ,
a category Bi( ) consists of
! objects: pairs of objects in , and
! morphisms from (A, A’) to (B, B’):

pairs of morphisms f> : A -> B and f< :A B’ -> A’.
! Composition is the sequential composition.
! Identity morphism on A is given by (idA, π2).

A

A’

B

B’

Reflection function

! For a morphism f: (A, A’) -> (B, B’), we call the 
function (B, B’) -> (A, A’) reflection function.

! This does not determine the original morphism
f = (f>, f<) : (A, A’) -> (B, B’), e.g.

This has no information of “view”, i.e., f> .

Operation
on View

f>

f<

pSource
Update

A

A’

B

B’

1

1

B

B

b

!
id

BiΔ( ),  BiΔs ( )

! For a cartesian category ,
a category BiΔ( ) is defined as
the full subcategory of Bi( ) determined by the 
objects {(A, A)|A in C}.

! For a morphism in BiΔ( ), we call it stable if its 
reflection function maps idB to idA .

! Identity in BiΔs ( ) is stable, and composition 
preserves stability, so we have a subcategory BiΔs ( ) 
of stable morphisms.

A

A

B

B
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Monoidal Product

! Pararell Composition:

! If f and g are stable, so is f g.
! This is a functor and forms symmetric monoidal

category. 

f g = ( f> g> ,    f< g< )
A C

A’ C’

B D

B’ D’
and

A

A’

B

B’

C

C’

D

D’ 
f = (f>, f<) g = (g>, g<)

monoidal category
category

monoid
set( =                      )

Monoidal unit and View operation

! The unit of the monoidal product is (1, 1).
! Bidirectional morphism from (B, B’) to the unit 

(1,1) in Bi( )  bijectively correspond to ordinary 
morphism from B to B’ in .

! Then reflection function is just composition.

A

A’

B

B’

B

B’

1

1 

A

A’

B

B’

B

B’

Trace

! For a monoidal category C, trace operator tr(-) is 
the following operator (with certain axioms).

f:  A C -> B C 
tr(f):  A -> B

! Trace operator is for repeated computation.
! Trace for (cartesian) products is equivalent to fixed 

point operator [Hyland, Hasegawa 97].
! Trace for coproducts is called iterator (like while loop).

C

B

C

BTr(f)
C
A

C
Af
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Cf. GoI

! Geometry of Interaction is originally studied for 
proof nets in linear logic [Girard 89].

! Categorically, it is understood by Int costruction:
For a traced monoidal category ,
Int( ) consists of 
! objects: pairs (A, A’) of objects in 
! morphisms from (A, A’) to (B, B’):

morphisms A B’ -> B A’ in .
! If has trace, so does Int( ). (Moreover Compact 

closed category) [Joyal, Street and Verity 96]

A’
A
B’

B
f

Bi vs. Int

! Bi(-) construction can be considered for symmetric 
monoidal categories. (But here we skip.)

! For a cartesian category ,
a morphism f : (A, A’) -> (B, B’) in Int( ) is 
(essentially) a pair of morphism (f>, f<) where
f> A B’ -> B, f< A B’ -> A’ in .

! Hence bidirectional program is such morphism that 
f> discard B’ imformation, and there is a symmetric 
monoidal functor J: Bi( ) -> Int( ) (: not faithful).

A

A’

B

B’

Trace operator for Bi(C)

! Prop.
For a traced symmetric monoidal category , (especially a 
cartesian category with fixed point operator,) we have a 
traced monoidal category Bi( ) such that the symmetric 
monoidal functor J: Bi( ) -> Int( ) preserves their traces.

C C

C’ C’

A B

A’B’

f>
C

f>
B

f<
C’

f<
A’

C C

C’ C’

A B

A’B’

f>
C

f>
B

f<
C’

f<
A’

source view

view source

source view

view source
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Duplication-by-Split by products

! Prop.
In Bi( ), there are cartesian products:
(A,A’) (B,B’)  :=  (A B, A’ B’)

C

C’

A

A’

C

C’

B

B’
f = (f>, f<) g = (g>, g<)

<f , g> = 
( <f>, g> > ,  (d ;) [f<,g<] )

C

C’

A B

A’ B’

or

Products vs. Monoidal Products

Dup.-by-Split by Products Dup.-by-Split by Monoidal Prod.
Flat type (Eq) Not required Required
Property Genuine cartesian Only beta equality, w/o eta eq.
Where in Bi( ) BiΔs ( )
Stability Difficult to formalize* Ok
Safety(?) Safe(?) Unsafe(?)

*:  On stability of products, at least the following holds:
the reflection function maps π1; ι1 and π2; ι2 to idC .

(cf. Here, π1; ι1 and π2; ι2
are pairing injective: i.e., 
<π1; ι1 , π2; ι2 > is injective.)

C

C

A B

A B

<f>, g> > 

(d ;) [f<,g<]

A     B
π1 π2

ι1 ι2id

On Safety(?)

! For duplication by monoidal products, we can post-
compose other bidirectional program h in BiΔ( ).

! Then, it is not rare at all that both B and C are changed 
via h.

! After that, final change on A is nothing.
This might make users write unintended programs.

! On the other hand, with cartesian product, we can 
constrain not to post-compose, or if we program in 
Bi( ), no problem.

C

C

A B

A B
C

C

A B

A B

D

D

h
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“Coproduct”

! We have a construction as the following:
(A, A’)+(B, B’)   :=   (A+B, A’+B’)

! What is this?
! … To make a mapping on morphisms, we define it 

in BiΔ( ):
(A+C) (B+D)

A B+A D+C B+C D -> A+A+C+C -> A+C
! Then Coproduct? Or, just monoidal product?

A+C

A+C

B+D

B+D

or

Semi-coproduct

! Unfortunately, + is not even monoidal product.
! Since, + is not even functor.

This + does not preserve identity.

! However, + preserve composition in BiΔs ( ).
This kind of structure is called semi-functor.

! Moreover, + in BiΔs ( ) is semi-coproduct.
(Cf. [Hayashi 85])

A+B

A+B

A+B

A+B

Properties of Semi-coproduct

! For stable bidirectional programs
fi: Ai B    (i=1,2),  there is  [f1, f2]: A1+A2 B .
For types Ai (i=1,2), there is ιi: Ai A1+A2 .

! The following equations hold:
[f1, f2] ; g = [f1;g, f2;g]
ιi ; [f1, f2] = fi (i=1,2)

[ι1, ι2 ] = id+id
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Example of Bidirectional Program

name … age … address
Taro … 23 … Asakusa
Hana … 18 … Hongo

name age

Taro 23

Hana 18

name address

Taro Asakusa

Hana Hongo

name … age … address
Taro … 20 … Asakusa
Hana … 18 … Hongo

name age

Taro 20

Hana 18

name address

Taro Asakusa

Hana Hongo

Source DB GUI view of Abstracted Data

Bidirectional Programming and Monad

! Pure Bidirectional Programming:

! Bidirectional Programming with Monad T
(e.g. I/O Monad), or in CBV Language:

DB
T DB

T AbsData
AbsData AbsData -> T AbsData

DB
DB

AbsData
AbsData AbsData -> AbsData

DB -> DB

DB -> T DB

Summary

! Optional “world”s for bidirectional programming: 
Bi( )  BiΔ( )  BiΔs ( )

! We have the following constructors on 
bidirectional programs:
! Monoidal product in Bi( ),  BiΔ( ),  BiΔs ( )
! Trace operator in Bi( ),  BiΔ( )
! Cartesian product in Bi( )
! Semi-coproduct in BiΔs ( )

! Bidirectional programs easily accommodate with 
monad, and with arrow.
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More

! The same thing might hold about trace w.r.t. 
coproducts: i.e.,
“if C has iterator, then BiΔs ( ) has (semi-)iterator”.
However we first define the notion of semi-trace...

cf. Bidir. Progr. forms an Arrow?

! Bi(A,B):= (A -> B) (A B -> A)
! >>>, first operator seems exist,

but is there arr: (A -> B) -> Bi(A, B) ?
! arr f = λa . (f a, λb . a)

does not work, 
since this does not map identity to identity.

! There seems not to be arrow structure.
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Regular expressions as types
(Report and co-report)

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

DIKU-IST Workshop, Tokyo, 2011-01-12

Joint work with Lasse Nielsen, DIKU
TrustCare Project (trustcare.eu)

With ideas and support from Dexter Kozen and TIPL 2010
course participants

Most used embedded DSLs for programming

MS Excel macro language

SQL

Regular expressions

Observe: They are designed to be domain-oriented, declarative and
of limited expressive power.

2

Regular language

Definition (Regular language)

A regular language is a language (set of strings) over some finite
alphabet A that is accepted by some finite automaton.

3
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Regular expression

Definition (Regular expression)

A regular expression (RE) over finite alphabet A is an expression of
the form

E ,F ::= 0 | 1 | a | E |F | EF | E∗
where a ∈ A

4

Language interpretation of regular expressions

Definition (Language interpretation)

The language interpretation of a regular expression E is the set of
strings L[[E ]] defined by

L[[0]] = ∅
L[[1]] = {ε}
L[[a]] = {a}

L[[E |F ]] = L[[E ]] ∪ L[[F ]]
L[[EF ]] = L[[E ]]� L[[F ]]
L[[E∗]] =

⋃

i≥0(L[[E ]])i

where S � T = {s t | s ∈ S ∧ t ∈ T}, E 0 = {ε},E i+1 = E E i .

5

Kleene’s Theorem

Theorem (Kleene 1956)

A language is regular if and only it is denoted by a regular
expression under its language interpretation.

6
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Theory = Language interpretation
What we normally learn and teach about regular expressions in
theory of computing classes:

They’re just a way to talk about finite state automata

All equivalent regular expressions are interchangeable since
they accept the same language.

All equivalent automata are interchangeable since they accept
the same language.

We might as well choose an efficient one (deterministic,
minimal state): it processes its input in linear time and
constant space.

Complexity of containment and equivalence
(PSPACE-complete).

Closure properties, Myhill-Nerode Theorem, Pumping Lemma,
Star-height problem . . .

Observe: Assumes language interpretation!
7

Practice = Type interpretation

How regular expressions are used in programming1:

Group matching: Does the RE match and where do (some of)
its sub-REs match in the string?

Substitution: Replace matched substrings by specified other
strings

Extensions: Backreferences, look-ahead, look-behind,...

Lazy vs. greedy matching, possessive quantifiers, atomic
grouping

Optimization

Observe: Language interpretation (yes/no) inappropriate, need
more refined interpretation

1in Perl and such
8

Example

((ab)(c|d)|(abc))*.

Match against abdabc .
For each parenthesized group a substring is returned.a

PCRE POSIX

$1 = abc abc
$2 = ab ε
$3 = c ε
$4 = ε abc

aOr special null-value

9
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Intermezzo: Optimization??
Optimizing regular expressions = rewriting them to equivalent
form that is more efficient for matching.2

Cox (2007)

Perl-compliant regular expressions (what you get in Perl,
Python, Ruby, Java) use backtracking parsing.
Does not handle “problematic” regular expressions: E ∗ where
E contains ε – will typically crash at run-time (stack overflow).

2Friedl, Mastering Regular Expressions, chapter 6: Crafting an efficient
expression10

Why discrepancy between theory and practice?

Theory is extensional: About regular languages.

Does this string match the regular expression? Yes or no?

Practice is intensional: About regular expressions as
grammars.

Does this string match the regular expression and if so
how—which parts of the string match which parts of the RE?

Ideally: Regular expression matching = parsing +
“catamorphic” processing of syntax tree

Reality:

Naive backtracking matching, or
finite automaton + opportunistic instrumentation to get some
parsing information (TCL (?), Laurikari 2000, Cox 2010).

11

Regular expression parsing

Regular expression parsing: Construct parse tree for given
string.

Representation of parse tree: Regular expression as type

Example

Parse abdabc according to ((ab)(c|d)|(abc))*.

p1 = [inl ((a, b), inr d), inr (a, (b, c))]

p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]

p1, p2 have type ((a× b)× (c + d) + a × (b × c)) list .

Compare with regular expression ((ab)(c|d)|(abc))* .

The elements of type E correspond to the syntax trees for
strings parsed according to regular expression E !

12
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Type interpretation

Definition (Type interpretation)

The type interpretation T [[.]] compositionally maps a regular
expression E to the corresponding simple type:

T [[0]] = ∅ empty type
T [[1]] = {()} unit type
T [[a]] = {a} singleton type

T [[E | F ]] = T [[E ]] + T [[F ]] sum type
L[[E F ]] = T [[E ]]× T [[F ]] product type
T [[E ∗]] = {[v1, . . . , vn] | vi ∈ T [[E ]]} list type

13

Flattening

Definition

The flattening function flat(.) : Val(A) → Seq(A) is defined as
follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inrw) = flat(w)

flat((v ,w)) = flat(v) flat(w)

flat([v1, . . . , vn]) = flat(v1) . . . flat(vn)

Example

flat([inl ((a, b), inr d), inr (a, (b, c))]) = abdabc

flat([inl ((a, b), inr d), inl ((a, b), inl c)]) = abdabc

14

Regular expressions as types

Informally:

string s with syntax tree p according to regular expression E
∼=

string flat(v) of value v element of simple type E

Theorem

L[[E ]] = {flat(v) | v ∈ T [[E ]]}

15
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Membership testing versus parsing

Example

E = ((ab)(c|d)|(abc))* Ed = (ab(c|d))*

Ed is unambiguous: If v ,w ∈ T [[Ed ]] and flat(v) = flat(w)
then v = w . (Each string in Ed has exactly one syntax tree.)

E is ambiguous. (Recall p1 and p2.)

E and Ed are equivalent: L[[E ]] = L[[Ed ]]

Ed “represents” the minimal deterministic finite automaton
for E .

Matching (membership testing): Easy—use Ed .

But: How to parse according to E using Ed?

16

Regular expression equivalence and containment

Sometimes we are interested in regular expression containment or
equivalence.3

Definition

E is contained in F if L[[E ]] ⊆ L[[F ]].
E is equivalent to F if L[[E ]] = L[[F ]].

Regular expression equivalence and containment are easily related:
E ≤ F ⇔ E + F = F and E = F ⇔ (E ≤ F ∧ F ≤ E ).

3See e.g. Yasuhiko’s talk.
17

Coercion

Definition (Coercion)

Partial coercion: Function f : T [[E ]] → T [[F ]]⊥ such that f (v) = ⊥
or flat(v) = flat(f (v)).

Coercion: Function f : T [[E ]] → T [[F ]] such that
flat(v) = flat(f (v)).

Intuition:

A coercion is a syntax tree transformer:

It maps a syntax tree under regular expression E to a syntax
tree under regular expression F for same string.

Coercion = function where you “don’t discard, duplicate,
shuffle”4

4Recall Akimasa Morihata’s talk
18
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Example

f : ((a× b)× (c + d) + a× (b × c)) list → (a× (b × (c + d))) list

f ([ ]) = [ ]
f (inl ((x , y), z) :: l) = (x , (y , z)) :: f (l)
f (inr (x , (y , z)) :: l) = (x , (y , inl z)) :: f (l)

flat(f (v)) = flat(v) for all
v : ((a× b)× (c + d) + a × (b × c)) list.

So f defines a coercion from E = ((ab)(c|d)|(abc))* to
Ed = (ab(c|d))*.

f maps each proof of membership (= syntax tree) of a string
s in regular language L[[E ]] to a proof of membership of string
s in regular language L[[E ]].
So f is a constructive proof that L[[E ]] is contained in L[[F ]]!

19

Regular expression containment by coercion

Proposition

L[[E ]] ⊆ L[[F ]]
if and only if

there exists a coercion from T [[E ]] to T [[F ]].

Idea:

Come up with a sound and complete inference system for
proving regular expression containments.

Interpret it as a language for definining coercions:

Soundness: Each proof term defines a coercion.
Completeness: For each valid regular expression containment
there is at least one proof term.

20

A crash course on regular expression containment

All classical sound and complete axiomatizations basically
start with the axioms for idempotent semirings.

Then they add various inference rules to capture the
semantics of Kleene star.

Algorithms for deciding containment are “coinductive” in
nature:

transformation to automata or
regular expression containment rewriting

The algorithms have little to do with the axiomatizations!

They do not produce a proof (derivation)
They cannot be thought of proof search in an axiomatization.

21
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Our approach

Idea:

Axiomatization =
Idempotent semiring
+ finitary unrolling for Kleene-star
+ general coinduction rule (for completeness)
- restriction on coinduction rule (for soundness)

Each rule can be interpreted as natural coercion constructor.

Algorithms for deciding containment can be thought of as
strategies for proof search. They yield coercions, not just
decisions (yes/no).

22

Idempotent semiring axioms
Proviso: + for alternation, × for concatenation, ∗ for Kleene-star.

E + (F + G ) = (E + F ) + G

E + F = F + E

E + 0 = E

E + E = E

E × (F × G ) = (E × F )× G

1× E = E

E × 1 = E

E × (F + G ) = (E × F ) + (E × G )

(E + F )× G = (E × G ) + (F × G )

0× E = 0

E × 0 = 0

23

Kleene-star

Finitary unrolling:

E ∗ = 1 + E × E ∗

General coinduction rule:

[E = F ]
· · ·

E = F

E = F

Fantastically powerful rule!

Unfortunately unsound

But “right idea” – just needs controlling.

24
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Type-theoretic formulation: Idempotent semiring
With explicit proof terms, using judgement form (due to dispatch
in coinduction rule) and containment instead of equivalence:

Γ 
 shuffle : E + (F + G ) ≤ (E + F ) + G
Γ 
 shuffle−1 : E + (F + G ) ≤ (E + F ) + G

Γ 
 retag : E + F ≤ F + E

Γ 
 untag : E + E ≤ E
Γ 
 tagL : E ≤ E + F

. . .
Γ 
 proj : E × 1 ≤ E
Γ 
 proj−1 : E ≤ E × 1

Γ 
 distL : E × (F + G ) ≤ (E × F ) + (E × G )
Γ 
 distL−1 : (E × F ) + (E × G ) ≤ E × (F + G )
. . .

25

Primitive coercions

Each axiom can be interpreted as a coercion; e.g.,

shuffle(inl x) = inl (inl x)

shuffle(inr (inl y)) = inl (inr y)

shuffle(inr (inr z)) = inr z

The (p, p−1) pairs denote type isomorphisms:
p ◦ p−1 = id and p−1 ◦ p = id.

(tagL , untag ) is an embedding-projection pair, but not an
isomorphism even for E ≡ F :
untag ◦ tagL = id, but tagL ◦ untag �= id.

26

Type-theoretic formulation: Kleene-star, coinduction

Γ 
 wrap : 1 + E × E ∗ ≤ E ∗

Γ 
 wrap−1 : E ∗ ≤ 1 + E × E ∗

Γ, f : E ≤ F 
 c : E ≤ F

Γ 
 fixf .c : E ≤ F
(Sx)

Interpret (wrap ,wrap−1) as isomorphism in accordance with
isorecursive interpretation of lists.

Interpret fix as least fixed point operator; that is, as
recursively defined coercion: fix = Y (λf .c).

Add side-condition (Sx) that ensures that recursively defined
coercions terminate.

27
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The mother of all side conditions

Definition

Coercion c in Γ 
 c : E ≤ F is hereditarily total if whenever its free
variables are bound to (total!) coercions then it denotes a (total!)
coercion.

Side condition S0 (Total): fixf .c is hereditarily total

Theorem

It is undecidable whether Γ 
 c : E ≤ F is hereditarily total.

Proved by Eijiro Sumii, Yasuhiko Minamide, Naoki Kobayashi,
Atsushi Igarashi and Fritz Henglein at the IFIP TC 2 Working
Group 2.8 meeting at Shirahama, Japan, April 11-16, 2010.

28

Other side conditions (informally)

Definition (Size of value)

0-size of v = |flat(v)| (length of underlying string)

1-size of v = 0-size of v + number of () occurring in v

Definition

S2: Guarantees that recursive calls in coercions are on values
of smaller 1-size.

S4: Guarantees that recursive calls in coercions are on values
of smaller 0-size.

29

Soundness and completeness

Theorem (Soundness and completeness)

For any of the side conditions S0, S2, S4:

L[[E ]] ⊆ L[[F ]]
if and only if

there exists c such that 
 c : E ≤ F

Theorem (Parametric soundness and completeness)

For side conditions S0, S2 (but not S4):

For all E ′,F ′ we have L[[E [E ′/X ]]] ⊆ L[[F [E ′/X ]]]
if and only if

there exists c such that 
 c : [∀X .]E ≤ F

30
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Computational interpretation of proofs

It is possible to:

code Salomaa’s and Grabmeyer’s axiomatizations of regular
expression equivalence with side condition S4.

code Kozen’s axiomatization of Kleene Algebra (= regular
expression equivalence) with side condition S2.

Significance:

Provides computational interpretation of their proofs: Proofs
= coercions (functions that do not discard, duplicate, shuffle)

Shows that Kozen’s axiomatization is parametric complete,
but Salomaa’s (F1) and Grabmeyer’s are not. (Message: Use
1-size, not 0-size.)

Our axiomatization provides “more proofs”: Better if you are
looking for an efficient proof.

Raises question: How to find one?

31

So what?

Summary so far:

A regular expression denotes a type (“right-regular type”).

A proof of regular expression containment denotes a coercion
from one regular expression interpreted as a type to the other.

What is this good for?

32

Theoretical applications

Provides theoretical framework for formulating problems and
(eventually) solving them:

1 Parametric completeness

2 Coercion synthesis

3 Oracle coding (see below)

4 Fast parsing (see below)

5 Ambiguity resolution

6 Regular expressions as refinement types for strings

33
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Practical applications

First results:

Bit-coded parse trees

Bit-coded regular expression parsing

34

Bit coding

Record binary choices for expanding a regular expression E
into a particular string s.

The sequence of choices (as bits) is the bit coding of s under
E .

Example

Recall syntax trees p1, p2 for abdabc under
E = ((a× b)× (c + d) + a × (b × c))∗.

p1 = [inl ((a, b), inr d), inr (a, (b, c))]

p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]

We can code them by storing only their inl , inr occurrences:

code(p1) = 011

code(p2) = 0100

35

Bit decoding

There is a linear-time polytypic function decode that can
reconstitute the syntax trees.

Theorem

decodeE (codeE (v)) = v for all v ∈ T [[E ]].

Example

decodeE (011) = [inl ((a, b), inr d), inr (a, (b, c))]

decodeE (0100) = [inl ((a, b), inr d), inl ((a, b), inl c)]

36
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Bit coding: Applications

Bit-coded parse trees are (typically substantially) smaller than
serialized parse trees (e.g., source code).

Support efficient left-to-right traversal of parse trees.
Can be combined with statistical compression to obtain
improved compression.

Coercions can be automatically specialized to operate on bit
codes instead of manifest parse trees (not worked out in detail
yet); e.g.,

retag(0d) = 1d

retag(1d) = 0d

assoc(d) = d

Right-regular grammars yield better (more compressed) bit
codes than regular expressions.

37

Ambiguity resolution

All regular expression equivalences yield coercion
isomorphisms, except for one: (tagL , untag ) : E = E + E .

This is where ambiguity is introduced/eliminated! Always
choosing tagL (from left to right) favors the left alternative,
as in Perl.

Eager matching seems to correspond to choosing the right
alternative in E ∗ = 1 + E × E∗; lazy matching to choosing
the left alternative.

Open problem

Design an expressive annotation for regular expressions that
specifies a choice function for deterministically choosing one of
potentially multiple syntax trees for a string and that can (at a
minimum) express POSIX and PCRE rules.

38

Bit coded regular expression parsing

Problem:

Input: string s and regular expression E .
Output: (some) parse tree p such that flat(p) = s.

Goal: Output bit coding codeE (p) instead.

Dual advantage:

Less space used for output.
Output faster to compute.

How to do that? Mark the “turns” in Thompson NFA (they
yield the bit coding)

39
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DFASIM algorithm: Outline

1 RE to NFA: Build Thompson-style NFA with suitable output
bits

2 NFA to DFA: Perform extended DFA construction (only for
states required by input string), with (multiple) bit sequence
annotations on edges

3 Traverse accepting path from right to left to construct bit
coding by concatenating bit sequences.

40

Thompson-style NFA generation with output bits
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Benchmark experiments
Benchmarks from Veanes et al. (2010)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2000  4000  6000  8000  10000

tim
e

n

Example #1

FrCa (s)
DFA (s)

Precompiled DFA (ms)
DFASIM (ms)

 0

 100

 200

 300

 400

 500

 600

 700

 0  2000  4000  6000  8000  10000

tim
e

n

Example #2

Backtracking (ms)
FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2000  4000  6000  8000  10000

tim
e

n

Example #4

FrCa (ms)
DFA (s)

Precompiled DFA (ms)
DFASIM (ms)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  2000  4000  6000  8000  10000

tim
e

n

Example #5

FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  2000  4000  6000  8000  10000

tim
e

n

Example #6

Backtracking (s)
FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  2000  4000  6000  8000  10000

tim
e

n

Example #7

FrCa (ms)
DFASIM (ms)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  2000  4000  6000  8000  10000

tim
e

n

Example #8

FrCa (ms)
DFASIM (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  2000  4000  6000  8000  10000

tim
e

n

Example #9

FrCa (ms)
DFASIM (ms)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  2000  4000  6000  8000  10000

tim
e

n

Example #10

FrCa (ms)
DFASIM (ms)

42

221



Benchmark experiment #2
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Benchmark experiment #6
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Regular expressions as refinement types for strings

Add regular expressions as refinement types

They’re already there: Regular types! What needs to be
added is coercion synthesis (∼ deciding regular expression
containment).

Use bit coding for run-time representations and bit-coded
coercions for bit transformations.

Open problem

Polymorphic regular type and coercion inference.

Related to Hosoya/Frisch/Castagna (2005), which is for regular
expression types, however.

48

Future work

Projection/substitution: efficient composition of parsing,
containment (coercions) and catamorphic postprocessing.

Analysis of ambiguity resolution.

Build a PCRE- and RE2-killer library.

Comparison of RE parsing with specialized algorithms
(Knuth-Morris-Pratt, Boyer-Moor for single keyword;
Aho-Corasick for multiple keywords)

NFA constructions, relation to Fuh/Mishra S- and
G-simplification?

Proof-theoretic analysis of Krob-Boffa characterization of RE
equivalence (50 page proof). Simplified proof?

Regular expressions as refinement types: Type inference for
script languages (Python, Thorn, etc.)

49
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Workflows as Session Types
at DIKU/IST Workshop 2011

Lasse Nielsen

University of Copenhagen

January 13, 2011

Joint work with
Nobuko Yoshida, Imperial College
Kohei Honda, University of London

Project: TrustCare

Workflow models
Aim

Formal specification of cooperative procedures
Implementation (GUI) verification

Motivation

Clinical Practice Guidelines(CPGs):
Detailed descriptions of specific healthcare procedures.

Problem

Verification is either too rigid (one to one), or (too) unsafe

Idea

Use typechecking to verify specification compliance

2

Outline

1 Introduction

2 Outline

3 Workflows and Communication Protocols

4 Implementation

5 Example

6 Future Work
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What are Workflows

Fixed sets of actions and participants

Describes allowed sequences of actions performed by participants

Used for describing Clinical Practice Guidelines (CPGs)

Example: Doctor consultation

Data Schedule Result
Data

Doctor, Nurse

Schedule
Doctor, Nurse

Result
Doctor

Extended workflow as Process Matrix

Roles

Id Name Patient Doctor Nurse Predecessors

1 Data W R R

2 Schedule R W W 1

3 Result R W N 2

4

What are Multiparty Session Types

Fixed sets of channels and participants

Describes allowed sequences of messages sent between participants

Example: 1→3:1〈String〉; 3→1:2〈Date〉; 2→1:3〈String〉; end
Example could correspond to one way of completing the workflow

Data
Doctor, Nurse

Schedule
Doctor, Nurse

Result
Doctor

Idea:
If performing actions corresponds to sending messages on channels
Then we can represent some workflows as session types

5

Asynchronous π-calculus Multiparty Session Types2

Problem: Cannot represent common decission
(Example of Social Interaction)

(Global Types)
G ::= p → p′ : k〈U〉.G ′

| p → p′ : k{li : Gi}i∈I

| µt.G
| t
| end
| {l : Gl}l∈L;L′ (L′ �= ∅)1

(Message Types)
U ::= S̃

| T@(p,m, n)

(Simple Types)
S ::= bool

| int
| ...
| 〈G〉

(Local Types)
T ::= k!〈U〉;T

| k?〈U〉;T
| k ⊕ {l : Tl}l∈L

| k & {l : Tl}l∈L

| µt.T
| t
| end
| {l : Tl}l∈L;L′

1EXPRESS’10: Nielsen, Yoshida and Honda
2POPL’08: Honda, Carbone and Yoshida

6
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Process extensions

Will not describe Asynchronous π-calculus with Multiparty sessions
[POPL’08]

New process construct: syncs̃,n{l : Pl}l∈L
Represents participation in a common decission with n participants

Synchronization step:

h ∈
⋂n

i=1 Li
syncs̃,n{l : P1l}l∈L1 | ... | syncs̃,n{l : Pnl}l∈Ln → P1h | ... | Pnh

New typing rule:

∀l ∈ L′ : Γ � Pl �∆, s̃ : Tl@(p, n) L′ ⊆ L ∪M M ⊆ L′

Γ � syncs̃,n{l : Pl}l∈L′ �∆, s̃ : {l : Tl}l∈L;M@(p, n)

7

Results

Theorem: Subject Reduction
If Γ � P �˜̃s ∆ and P → P ′

then Γ � P ′ �˜̃s ∆
′ where ∆ →0/1 ∆′.

Communication safety

Single Session Progress

As expressive as the Process Matrix

8

Aπms

Asynchronous π-calculus with Multiparty sessions and Symmetric sum

First implementation of Asynchronous π-calculus
with multiparty sessions and multiparty session types
(It is however cheating!)

Proof of concept implementation (slow and uses much memmory)

Includes synchronisation and symmetric sum type extensions

Aπms extends the theory with user interaction (GUIs)

There is a translation from the Process Matrix workflow model to
Aπms, which allows execution of workflows.

Aπms and code examples are available from
www.thelas.dk/index.php/Apims.

9
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Real World Example3

Vunerabilities:
Bad faith implementations (Adversarial Model)
Typechecking does not ensure correct value is sent
Unimplemented Services (Gets stuck)
No progress for muli-session processes.

3From ProHealth’08
10

Future Work

Improve Implementation (Compiler, Exploit parallelism)

Encoding of Process Matrix has exponential size

Add assertions by merging theory with [BHTY2010]

Encode more workflow models (UML Activity Diagrams, GLIF, ...)

Extend theory with temporal properties such as deadlines

Encode in Adversarial Model

11

End of talk

POPL08: Multiparty Asynchronous Session Types
by Kohei Honda, Nobuko Yoshida and Marco Carbone (POPL 2008)

BHTY2010: A theory of design-by-contract for distributed multiparty interactions
by Laura Bocchi, Kohei Honda, Emilio Tuosto and Nobuko Yoshida (Concur 2010)

SGI’09: A Game-Theoretic Model for Distributed Programming by Contract
by Anders Starcke Henriksen, Tom Hvitved and Andrzej Filinski

ProHealth’08: From Paper Based Clinical Practice Guidelines to Declarative
Workflow Management
by Karen Marie Lyng, Thomas Hildebrandt and Rakhava Rao Mukkamala
Available from: http://www.trustcare.eu

Aπms: www.thelas.dk/index.php/Apims

Full version: www.thelas.dk/index.php/Symmetric Sum Types

Questions?

12
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Semirings for Free! 
An Algebraic Approach 

 to Efficient Parallel Algorithms 
 for Nested Reductions 

Kento EMOTO (University of Tokyo) 

Background 
!

!

!

!

!

This Work 
!

!

!

!

!
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!

!

!

!

Simple Problem:  
The Maximum Subsequence Sum 
!

!

!

!

Efficient Computation via Semiring 
!

!

!
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Question: 
Do Similar Problems Have Efficient Algorithms? 
!

!

!

!

!

!

The Answer: Yes! 
The Current Results of This Work 

!

!

!

!

Running Example:  
Even-sum Maximum Subsequence Sum 
!

!

!

!

!
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Possible States of Partial Subsequences 
!

!

!

!

!

!

The Base Case Computation 
!

!

!

Efficient Algorithm for 
Even-sum Maximum Subsequence Sum 
!
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Efficient Algorithm for 
Even-sum Maximum Subsequence Sum 
!

!

Efficient Algorithm for 
Even-sum Maximum Subsequence Sum 
!

Embedding Filters into Semirings 

!

!

!
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Intuition of Lifted Semirings 
!

!

!

Question: 
Do Similar Problems Have Efficient Algorithms? 
!

!

!

!

!

!

GoGs by Predicates and Boolean Markings  
(based on the idea of [Sasano et al. 00]) 

!

!

!

!
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Optimization for FRH GoGs 
!

Question: 
Do Similar Problems Have Efficient Algorithms? 
!

!

!

!

!

!

(stop over) 
Finding Solutions as well as Values 
!

!

!

!
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(stop over)  
Simple Querying (generate-and-test) 
!

!

!

Question: 
Do Similar Problems Have Efficient Algorithms? 
!

!

!

!

!

!

Summary of the Results 

!

!

!

!
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Conclusion and Future Work 
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!

!

!

!

!

!
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!

!
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!

!

236



Semiring Fusion

Sebastian Fischer∗

National Institute of Informatics, Tokyo

Programmers can write and reason about compositional programs that communicate via
intermediate data easily, but processors can execute monolithic programs that do not allo-
cate memory more efficiently. Short-cut fusion (Gill 1996; Gill et al. 1993) is a technique
to eliminate intermediate data shared between composed functions.

Traditionally, short-cut fusion does not improve the complexity of the transformed algo-
rithm. The generated program is more efficient only by a constant factor compared with
the program it is derived from. Identifying the type of the eliminated intermediate date
as free algebraic structure allows to apply short-cut fusion to improve the complexity of
algorithms. Every algebraic structure, like monoid or semiring, gives rise to a short-cut
fusion law that can be proved using a free theorem (Reynolds 1983; Wadler 1989). Using
an algebraic structure that satisfies a distributive law gives rise to asymptotic improvement
of algorithms transformed by short-cut fusion.

The key idea is that on the different sides of the distributive law “a·(b+c) = a·b+a·c” the
number of arithmetic operations are different. Semirings are an example for a distributive
algebraic structure. The following slides describe short-cut fusion with the free semiring,
multisets of lists.

References

Gill, Andrew. 1996. Cheap deforestation for non-strict functional languages. Ph.D. thesis,
The University of Glasgow.

Gill, Andrew, John Launchbury, and Simon L. Peyton Jones. 1993. A short cut to defor-
estation. In Proceedings of the Conference on Functional Programming Languages and
Computer Architecture, 223–232. FPCA ’93, New York, NY, USA: ACM.

Reynolds, John C. 1983. Types, abstraction and parametric polymorphism. In IFIP
Congress, 513–523.

Wadler, Philip. 1989. Theorems for free! In Proceedings of the Conference on Functional
Programming Languages and Computer Architecture, 347–359. FPCA ’89, ACM Press.

∗supported by a post-doc fellowship of the German Academic Exchange Service (DAAD)
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Semiring Fusion

Sebastian Fischer

DAAD Research Fellow at NII, Tokyo

Fourth DIKU-IST Joint Workshop on Foundations of Software

Quiz

How many sublists1 has [1 . . n]?

What is the sum of products over all sublists of [2,−1, 3]?

1some (not necessarily adjacent) elements in correct order

Preview

shortcut fusion

algebraic view on shortcut fusion

semirings as underlying structure

Linear algorithms to answer the posed questions can be
obtained from seemingly exponential specifications.
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Shortcut Fusion

Programmers can write easily

• compositional programs

• that communicate via intermediate data

Processors can execute efficiently

• tight loops

• that do not allocate memory

Simple Example

Without intermediate data:

factorial :: Int → Int
factorial n =
if n< 1 then 1
else n ∗ factorial (n− 1)

Compositional: factorial = product ◦ downFrom

prod :: [Int] → Int
prod [ ] = 1
prod (n : ns) = n ∗ prod ns

downFrom :: Int → [ Int]
downFrom n =
if n< 1 then [ ]
else n : downFrom (n− 1)

Abstracting from list constructors

genDownFrom :: Int → (Int → list → list) → list → list
genDownFrom n cons nil =
if n< 1 then nil
else cons n (genDownFrom (n− 1) cons nil)

build :: (∀list.(Int → list → list) → list → list) → [ Int]
build gen = gen (:) [ ] -- foldr f e (build g) = g f e

prod (downFrom n) = foldr (∗) 1 (build (genDownFrom n))
= genDownFrom n (∗) 1
= factorial n -- monolithic version
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Algebraic View

Abstracting the list interface

class IntList list where
cons :: Int → list → list
nil :: list

Homomorphisms / folds:

intListHom :: IntList list ⇒ [ Int] → list
intListHom [ ] = nil
intListHom (n : ns) = cons n (intListHom ns)

build with overloaded function

instance IntList [Int] where
cons = (:)
nil = [ ]

buildIntList :: (∀list.IntList list ⇒ list) → [ Int]
buildIntList gen = gen

Factorial again

downFromIntList :: IntList list ⇒ Int → list
downFromIntList n =
if n< 1 then nil
else cons n (downFromIntList (n− 1))

instance IntList Int where
cons = (∗)
nil = 1
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Free Theorem2 for IntList generator

The Free Theorem for gen :: ∀list.IntList list ⇒ Int → list

2
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi

Shortcut Fusion, revisited

• downFromIntList :: IntList list ⇒ Int → list

• intListHom respects IntList (is homomorphism)

• prod = intListHom

• downFrom = buildIntList ◦ downFromIntList

prod (downFrom n)
= intListHom (buildIntList (downFromIntList n))
= intListHom (downFromIntList n) -- by definition
= downFromIntList n -- by free theorem

Monoids

Alternative list interface:

class Monoid m where
one :: m
(⊗) :: m → m → m

Must satisfy laws:

• one is unit of ⊗: one⊗ x = x = x⊗ one

• ⊗ is associative: x⊗ (y ⊗ z) = (x⊗ y)⊗ z
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Monoids and Homomorphisms

instance Monoid [a] where
one = [ ]
(⊗) = (++)

instance Monoid Int where
one = 1
(⊗) = (∗)

monoidHom :: Monoid m ⇒ (a → m) → [a] → m
monoidHom f [ ] = one
monoidHom f [x] = f x
monoidHom f (xs ++ ys) = monoidHom f xs⊗monoidHom f ys

Monoid Generator and Free Theorem

downFromM :: Monoid m ⇒ (Int → m) → Int → m
downFromM f n =
if n< 1 then one
else f n⊗ downFromM f (n− 1)

Free Theorem:

hom ◦ gen f = gen (hom ◦ f)
Consequence:

factorial
= prod ◦ downFrom
= monoidHom id ◦ downFromM (λx → [x])
= downFromM (λx → monoidHom id [x]) -- by free theorem
= downFromM id -- by definition

Associativity

Interesting:

• more freedom for implementation of homomorphisms

• parallel execution by nesting in a balanced way

Boring:

• same number of multiplications, regardless of nesting

• fusion improves efficiency only by a constant factor
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Distributivity

Changes number of operations:

a · (b + c) = a · b + a · c
(a + b) · c = a · c + b · c

Extreme example:

(1 + x1) · . . . · (1 + xn) = 1

+ x1 + . . .+ xn

+ x1 · x2 + . . .+ xi · xk + . . .+ xn−1 · xn
...

+ x1 · . . . · xn
O(n) vs. O(2n) operations

Semirings

Extension of monoids:

class Monoid s ⇒ Semiring s where
zero :: s
(⊕) :: s → s → s

Laws:

• zero is unit of ⊕
• ⊕ is associative and commutative

• ⊗ distributes over ⊕
• zero cancels multiplication

instance Semiring Int where zero = 0; (⊕) = (+)

Another Semiring

type Bag a -- abstract type of multisets

instance Semiring (Bag [a]) where
zero = ∅
a⊕ b = a ∪ b

instance Monoid (Bag [a]) where
one = {[ ]}
a⊗ b = {x ++ y | x ∈ a, y ∈ b}

single :: a → Bag [a]
single x = {[x]}
Example:

(single 1⊕ single 2)⊗ single 3
= ({[1]} ∪ {[2]})⊗ {[3]}
= {[1], [2]} ⊗ {[3]}
= {[1, 3], [2, 3]}
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Homomorphisms

semiringHom :: Semiring s ⇒ (a → s) → Bag [a] → s
semiringHom f { } = zero
semiringHom f {[ ]} = one
semiringHom f (single x) = f x
semiringHom f (a⊕ b) = semiringHom f a⊕ semiringHom f b
semiringHom f (a⊗ b) = semiringHom f a⊗ semiringHom f b

Sublists

sublists :: [a] → Bag [a]
sublists [ ] = one
sublists (x : xs) = (one⊕ single x)⊗ sublists xs

Example:

sublists [2,−1, 3]
= {[ ], [2]} ⊗ {[ ], [−1]} ⊗ {[ ], [3]}
= {[ ], [3], [−1], [−1, 3], [2], [2, 3], [2,−1], [2,−1, 3]}

Counting sublists

size :: Bag [a] → Int
size = semiringHom (λx → 1)

size (sublists [1, 2, 3])
= size {[ ], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]}
= 1+ 1+ 1+ 1+ 1 ∗ 1+ 1 ∗ 1+ 1 ∗ 1+ 1 ∗ 1 ∗ 1
= 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1
= 8

size (sublists [1 . . n]) = 2n

O(2n) operations
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Sum of Products

prodSum :: Bag [Int] → Int
prodSum = semiringHom id

prodSum (sublists [2,−1, 3])
= prodSum {[ ], [3], [−1], [−1, 3], [2], [2, 3], [2,−1], [2,−1, 3]}
= 1+ 3− 1− 3+ 2+ 2 ∗ 3− 2 ∗ 1− 2 ∗ 1 ∗ 3
= 1+ 3− 1− 3+ 2+ 6− 2− 6
= 0

O(2n) operations

Generalized Sublists

genSublists :: Semiring s ⇒ (a → s) → [a] → s
genSublists f [ ] = one
genSublists f (x : xs) = (one⊕ f x)⊗ genSublists f xs

sublists = genSublists single

Semiring Fusion

Free Theorem:

hom ◦ gen f = gen (hom ◦ f)

Consequence:

semiringHom f ◦ gen single
= gen (λx → semiringHom f (single x)) -- by free theorem
= gen f -- by definition
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Size, efficiently

(size ◦ sublists) [1, 2, 3]
= (semiringHom (λx → 1) ◦ genSublists single) [1, 2, 3]
= genSublists (λx → 1) [1, 2, 3]
= (1+ 1) ∗ (1+ 1) ∗ (1+ 1)
= 2 ∗ 2 ∗ 2
= 8

O(n) operations

Sum of Products, efficiently

(prodSum ◦ sublists) [2,−1, 3]
= (semiringHom id ◦ genSublists single) [2,−1, 3]
= genSublists id [2,−1, 3]
= (1+ 2) ∗ (1− 1) ∗ (1+ 3)
= 3 ∗ 0 ∗ 4
= 0

O(n) operations

Review

shortcut fusion can be viewed through algebraic glasses

eliminated intermediate data is free algebraic structure

distributivity gives rise to asymptotic improvement
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Partial Evaluation of Janus
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February 15, 2011

Abstract

A reversible programming language is a programming language in which you can
only write reversible programs, i.e., programs that can be run both forwards (computing
outputs from inputs) and backwards (computing inputs from outputs). It is interesting to
study reversible programs and languages because computations on reversible computers
(computers that only allow reversible programs) in theory can be done using less energy
than computations on traditional irreversible computers. Janus is a reversible, structured
imperative programming language.

We present a partial evaluator for the full Janus language with the exception of pro-
cedure calls. The partial evaluator converts Janus programs into reversible flowcharts,
specialises these using polyvariant specialisation and converts the result back to struc-
tured form. Reversibility adds some complications, which we address in the paper. We
demonstrate the results by some small examples.

We believe this to be the first partial evaluator for a deterministic reversible program-
ming language.

This paper was first presented at the DIKU-IST 2011 workshop in Tokyo and later
presented in a slightly different form at PEPM’2011 in Austin, Texas.

1 Introduction
Reversible computation [14, 19, 3, 4, 9] can theoretically be done using less energy than
irreversible computation, as erasure of information necessarily dissipates energy in the form
of thermodynamic entropy [14]. Most studies use low-level computational models such as
reversible Turing machines [18, 3], but some studies use structured reversible programming
languages[16, 1, 24, 22, 23].

Partial evaluation [13, 11] is a technique for generating specialised programs by fixing the
value of some of the inputs to more general programs. The intent is that the specialised
programs are more efficient than the originals, and this has often been observed in practise.
Specialised programs perform fewer computations (and, hence, use less energy), so they can
be of interest to further reduce energy consumption.

The partial evaluator presented in this paper handles all of the Janus language except
procedure calls, which we address in a follow-up paper.

1
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2 The reversible language Janus
Janus is a structured reversible programming language originally designed for a class at Cal-
tech [16]. A Janus program starts with a declaration of variables divided into inputs, outputs
and other variables. Variables are either integer variables or arrays of integers. The size of an
array is either a constant number or given by a previously declared input variable. The main
part of a Janus program is a list of parameter-less procedure declarations and a sequence of
reversible statements that can use conditionals, loops and procedure calls. A special feature
is that procedures can be run backwards by calling them with the keyword uncall instead of
call. A grammar for Janus is shown in figure 1 and figure 2 shows a few examples of Janus
programs:

(a) Fibonacci. This Janus program takes a number n and returns both the nth and the
(n + 1)th Fibonacci numbers.

(b) Multiplication. This program takes two odd numbers a and b and returns both their
product and b (unchanged) as outputs. Running this in reverse divides the product by
b.

(c) Postfix interpreter. This program reads a postfix expression (represented as an array
of numbers) and an array of input values and then outputs the expression and its result.
Outputting the expression with the result is required for reversibility. Evaluation uses
two stacks: An evaluation stack stack and a stack garbage that is used to ensure
reversibility. Uncalling calc undoes the stack operations, so the stacks are, again, empty.

2.1 Informal semantics of Janus
We will only describe Janus informally and refer to [24] for a formal semantics.

Variables and array elements that are not inputs are initialised to 0 and variables and array
elements that are not outputs are verified to be 0 when the program ends. A variable or array
can be both input and output. Statements can take the following forms:

Update. The left-hand side of an update is either an integer variable or an element of an
array. The update can either add or subtract the value of the right-hand side to this.
The right-hand side can be any expression that does not contain the variable or array
used on the left-hand side and if the left-hand side is an array element, the array can not
be used in the expression specifying the index into the array. For example, the update
a[a[i]] += 1 is not legal. These restrictions ensures that the update can be reversed.
Expressions can use the operators +, - and /2.

Swap. A statement of the form lv1 <=> lv2 swaps the contents of lv1 and lv2, which can be
integer variables or array elements. It is possible to swap two elements of the same array,
but the index expression of an array can contain none of the arrays or integer variables
used in the swap statement. For example, while a[i] <=> a[j] is legal, a[i] <=> i is not.
Again, the restriction is required for reversibility.

Sequence. Statements separated by ; are executed in sequence.

Skip. No effect.

2
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Prog → Dec∗ -> Dec∗ (with Dec∗)? ; Stat Proc∗

Dec → id
Dec → id [ size ]
Stat → Lval += Exp
Stat → Lval -= Exp
Stat → Lval <=> Lval
Stat → Stat ; Stat
Stat → skip
Stat → if Cond then Stat else Stat fi Cond
Stat → from Cond do Stat loop Stat until Cond
Stat → call id
Stat → uncall id
Lval → id
Lval → id [ Exp ]
Exp → num
Exp → Lval
Exp → Exp + Exp
Exp → Exp - Exp
Exp → Exp /2
Exp → ( Exp )
Cond → Exp < Exp
Cond → Exp == Exp
Cond → odd(Exp)
Cond → ! Cond
Cond → Cond && Cond
Cond → Cond || Cond
Cond → ( Cond )
Proc → procedure id Stat

Figure 1: Syntax of Janus

Conditional. A statement of the form if c1 then s1 else s2 fi c2 is executed by first
evaluating c1. If this is true, s1 is executed and it is verified that c2 is true. If c1 is false,
s2 is executed and it is verified that c2 is false. If the exit-assertion c2 does not have
the expected value, the program stops with an error message. A condition can compare
numbers for equality (==), inequality (<) and test if a number is odd. Conditions can be
combined by conjunction, disjunction and negation. The construction can be illustrated
by the flowchart in figure 3(a), where a two-entry assertion is shown as a circle with two
entry arrows marked with the expected truth value.

Loop. A statement of the form from c1 do s1 loop s2 until c2 is executed by first evaluating
the assertion c1. If this is false, the program stops with an error message, otherwise s1

is executed and the c2 is evaluated. If this is true, the loop terminates. Otherwise, s2

is executed and c1 is evaluated (again). If c1 is true, the program stops with an error
message, otherwise the loop repeats from s1. The construction can be illustrated with
the flowchart in figure 3(b).

Procedure call. A procedure call is either of the form call p or uncall p, where p is a
procedure name. call p executes the body of p and returns to the place of the call.

3
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n -> a b;

a += 0; b += 1;
from a==0 do

n -= 1; a <=> b; b += a
loop skip
until n==0

(a) Fibonacci

a b -> b prod with t v;

from 0==prod do
if odd(a) then

prod += b; t += a/2;
a -= t+1; t -= a

else
t += a/2; a -= t; t -= a

fi !(prod<b)
loop

v += b; b += v; v -= b/2
until a==0;

from prod<b+b do
v += b/2; b -= v; v -= b

loop skip
until odd(b)

(b) Multiplication

sz exp[sz] i ins[i]
-> sz exp[sz] i ins[i] result
with pc sp stack[sz] gp garbage[sz];

call calc;
result += stack[0];
uncall calc

procedure calc
from pc==0 do

if exp[pc]==0 then
stack[sp] += exp[pc+1];
sp += 1

else
if exp[pc]==1 then

stack[sp] += ins[exp[pc+1]]; sp += 1
else // exp[pc]==2

sp -= 1; garbage[gp] <=> stack[sp];
if exp[pc+1]==0 then

stack[sp-1] += garbage[gp]
else

stack[sp-1] -= garbage[gp]
fi exp[pc+1]==0;
gp += 1

fi exp[pc]==1
fi exp[pc]==0;
pc += 2

loop skip
until pc==sz

(c) Postfix interpreter

Figure 2: Janus programs
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��t�
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�
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s1

s2

(a) Conditional (b) Loop

Figure 3: Flowchart diagrams for conditional and loop
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uncall p executes the body of p in reverse and then returns to the place of the call.
The sequence call p; uncall p has no net effect, as uncall p will undo all the state
changes done by call p.

Note that a Janus program can either terminate normally, fail or be nonterminating. We
regard all failures as equivalent, i.e., we do not differentiate between failing an assertion in a
loop or conditional or failing due to a non-zero non-output variable.

2.2 Reverse execution
Statements can be executed both forwards and backwards (when a procedure is called with
uncall). Backwards execution can be realised by syntactically reversing the statement and
then executing it forwards. A program can be reversed by swapping input and output vari-
ables and reversing the body statement. The function R below shows how statements can be
reversed.

R(lv += e) = lv -= e
R(lv -= e) = lv += e

R(lv1 <=> lv2) = lv1 <=> lv2

R(s1; s2) = R(s2); R(s1)
R(call p) = uncall p

R(uncall p) = call p
R(skip) = skip

R(if c1 then s1 else s2 fi c2) = if c2 then R(s1) else R(s2) fi c1

R(from c1 do s1 loop s2 until c2 = from c2 do R(s1) loop R(s2) until c1

3 Partial evaluation
Partial evaluation has been studied for many languages. Good overviews can be found in [13]
and [11].

Briefly stated, partial evaluation is about producing residual programs. If a program p
takes two inputs and a r takes one input, r is a residual program of p with respect to a value
s if, for any value d, running p with s and d as inputs yields the same result as running r with
d as input. I.e., either both terminate and produce the same result, both fail with an error
or both are nonterminating. A partial evaluator is a program that given (representations of)
a program p and a value s can produce (a representation of) a program r that is residual to
p with respect to s. Often, the definition of a partial evaluator is relaxed, so it is allowed to
be nonterminating for some p and s. In this relaxed definition, the always nonterminating
program is a partial evaluator, just not a very useful one.

These definitions generalise to cases where p has more inputs.
We will focus on offline partial evaluation: Inputs are classified in advance as known (static)

or unknown (dynamic), and it is determined which parts of the program depend only on the
static inputs and which parts may depend on the remaining (dynamic) inputs. When values for
the static inputs are given, this classification is used to determine which parts of the program
can be executed during specialisation and which parts must be included in specialised form in
the residual program. Thus, the specialisation process is divided into the following steps:

1. Classify input variables as static (to be specialised away) or dynamic (to remain in the
residual program).
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2. Given the input classification, automatically classify all parts of the program as static
or dynamic. This is called a binding-time analysis. Input variables that in step 1 were
classified as static may be reclassified as dynamic. The binding-time analysis can ensure
that all residual programs obey certain properties. We will use it to ensure that residual
programs are reversible.

3. Given the full program classification and the values of the inputs classified as static,
produce the specialised (residual) program by executing the static parts and copying
instances of the dynamic parts into the residual program. The dynamic parts of the
program may contain static values as constants, so the residual program can contain
several copies of the same dynamic program part with different static values as constants.
This phase is called specialisation.

The residual program can now be run with the remaining (dynamic) input values and will
produce the same result as running the original program with all inputs. You can run the
residual program repeatedly with different dynamic input values.

As an example of offline specialisation, consider the multiplication program shown in fig-
ure 2(b). We might want to specialise the program with the value 11 for a to get a one-input
program that takes b and returns b and the product of 11 and b.

In this example, all outputs depend on the dynamic input and are, hence, outputs of
the residual program. But in other programs there can be outputs that only depend on
static inputs. If we follow the usual definition of a residual program, the residual program
must return all outputs of the original program, including outputs that don’t depend on the
dynamic inputs and are, hence, the same every time. We will relax this requirement, so the
partial evaluator will return both a residual program and the values of the outputs that depend
only on static inputs, i.e., the static outputs. The residual program will, then, only return
the outputs that depend on dynamic inputs, i.e., the dynamic outputs. The reason for this
relaxation is that reversibility often requires a Janus program to return parts of its input along
with the “interesting” output. For example, an interpreter written in Janus usually returns
both the interpreted program and the result of running it. If we specialise the interpreter to
a program, we don’t want the residual program to return this program as part of its output.
Hence, we define the following correctness criterion for offline partial evaluation for Janus:

Given a a program p and an initial classification of inputs as static or dynamic, the binding-
time analysis must produce an annotated program where inputs and outputs are classified as
static or dynamic. Some variables that were initially classified as static may now be classified
as dynamic.

When, given the annotated program and values s of the static inputs, specialisation ter-
minates with static output s′ and a residual program r, the following must hold:

• If running p with inputs s and d terminates with outputs o, the part of o that was
classified as static must have the value s′ and if the part of the output that was classified
as dynamic has the value d′, then running r with d as input must terminate and return
d′ as output.

• If running p with inputs s and d stops with a failed assertion or does not terminate,
running r with d as input must do the same.

These requirements can easily be fulfilled either by the binding-time analysis classifying all
inputs and outputs as dynamic and let r = p or by making the specialiser not produce any
output. While we characterise such behaviours as correct, they are not desirable. But they
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are not always possible to avoid: Consider a program with one input and one output. It is
undecidable if the program will terminate without failure, so if we classify the output as static
we risk nontermination or failure during specialisation. So to ensure termination, we must
reclassify the output as dynamic, which may unnecessarily postpone computations until the
residual program is executed. Analyses can determine if specialisation of a given program is
guaranteed to terminate [10, 6, 12], but since this is undecidable, such analyses must necessarily
be imprecise. We will not address this issue further in this paper but simply allow specialisation
to sometimes not terminate.

4 Polyvariant partial evaluation
The standard approach to partial evaluation of imperative languages is polyvariant partial
evaluation [5, 13, 11]. Polyvariant partial evaluation allows the same portion of the original
program to be specialised to multiple different static states. This can completely change the
structure of the program, so unless severe restrictions are imposed, it works best with programs
that use unstructured control, i.e., programs that consist of basic blocks that each start with
a label and end with a (possibly conditional) jump.

In polyvariant specialisation of basic blocks, the label of a basic block and the values of the
static variables (the static state) are combined to make a new residual label. The statements
in the basic block are then specialised with respect to this static state and a new static state
is obtained. The jump at the end of the basic block is specialised in the following way:

• An unconditional jump to l is made into a residual jump to a residual label made by
combining l with the static state.

• A jump with a static condition is made into a residual unconditional jump to a residual
label made by combining the selected label with the static state.

• A jump with a dynamic condition is made into a residual conditional jump by specialising
the condition to the static state and making two residual labels by combining the original
labels with the static state.

If there are not already specialised basic blocks for the residual labels constructed above, these
are now produced. When there are specialised basic blocks for all residual labels, the residual
program is complete. It is possible that this process will not terminate.

4.1 Translation into flowchart form
A reversible flowchart language similar to Janus is described in [22]. We will convert the body
of a Janus program and all the procedure bodies into lists of basic blocks. Each basic block
consists of three parts: An entry point, a body and a jump. An entry point can be one of the
following:

• start, that indicates the block where execution starts.

• A named label.

• A two-entry assertion consisting of a condition c and two named labels l1 and l2. This
is written as if c from l1 l2. The condition c must be true if the basic block is entered
by a jump to l1 and false if the basic block is entered by a jump to l2.
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No label nor start can occur more than once in the entry points of all the basic blocks. The
body of a basic block is either empty or any statement that does not contain structured control
statements (conditionals and loops). The jump can be:

• return, that indicates the end of the program or procedure.

• An unconditional jump goto l.

• A conditional jump consisting of a condition c and two named labels l1 and l2. This is
written as if c goto l1 l2. If c is true, the jump goes to l1, otherwise to l2.

No label nor return can occur more than once in the jumps of all the basic blocks. A
basic block e: s; j, where e is an entry point, s a statement and j a jump is reversed into
R(j): R(s); R(e), where R is the statement-reversing function shown in section 2.2 extended
to handle entry points and jumps:

R(start) = return R(return) = start
R(l) = goto l R(goto l) = l

R(if c from l1 l2) = if c goto l1 l2 R(if c goto l1 l2) = if c from l1 l2

A structured program is translated by first making the body statements of the program and
procedures into single basic blocks by adding the entry point start and the jump return.
These basic blocks may contain structured statements, so we translate them using the function
T that translates a basic block that may contain structured statements into a set of basic blocks
that do not:

T (e : s; j) = {e : s; j}
if s does not contain structured statements

T (e : s1; s2; j) = T (e : s1; goto l) ∪ T (l : s2 j)
where l is a new label

T (e : if c1 then s1 else s2 fi c2; j) =
{e : if c1 goto l1 l2}
∪ T (l1 : s1; goto l3) ∪ T (l2 : s2; goto l4)
∪ {if c2 from l3 l4: j}

where l1, l2, l3 and l4 are new labels
T (e : from c1 do s1 loop s2 until c2; j) =

{e : goto l1}
∪ T (if c1 from l1 l2: s1; if c2 goto l3 l4)
∪ T (l4 : s2; goto l2) ∪ {l3 : j}

where l1, l2, l3 and l4 are new labels

After the translation, there can be trivial basic blocks of the form (l1 : goto l2). We can
eliminate such a block by making the jump to l1 jump to l2 instead. The program in figure 2(b)
is translated into the flowchart program in figure 4(a).

4.2 Binding-time analysis
We will, in this paper, not handle procedure calls, so we assume that the body of a basic block
is a sequence of updates and swaps. For simplicity, we use one global binding time for each
variable. so binding time analysis is fairly straightforward:
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a b -> b prod with t v ;

start:
goto f_2

if 0==prod from f_2 a_2:
if odd(a) goto t1_3 e1_3

t1_3:
prod += b; t += a/2; a -= t+1; t -= a
goto t2_3

e1_3:
t += a/2; a -= t; t -= a
goto e2_3

if !(prod<b) from t2_3 e2_3:
if a==0 goto f_11 l_2

l_2:
v += b; b += v; v -= b/2
goto a_2

if prod<b+b from f_11 a_11:
v += b/2; b -= v; v -= b
if odd(b) goto u_11 a_11

u_11:
return

a ~b -> ~b ~prod with t ~v ;

start:
~goto f_2

~if ^0~=prod from f_2 a_2:
if odd(a) goto t1_3 e1_3

t1_3:
prod ~+= b~; t += a/2; a -= t+1; t -= a
~goto t2_3

e1_3:
t += a/2; a -= t; t -= a
~goto e2_3

~if ~!(prod~<b) from t2_3 e2_3:
if a==0 goto f_11 l_2

l_2:
v ~+= b~;~ b ~+= v~;~ v ~-= b~/2
~goto a_2

~if prod~<b~+b from f_11 a_11:
v ~+= b~/2~;~ b ~-= v~;~ v ~-= b
~if ~odd(b) goto u_11 a_11

~u_11:
return

(a) flowchart (b) annotated flowchart

Figure 4: Multiplication program as flowchart and annotated flowchart

1. A statement, expression or condition that contains a dynamic variable is dynamic.

2. If an update statement is dynamic, then the variable or array element on the left-hand
side is dynamic.

3. If a swap statement is dynamic, the variables or array elements on both sides are dynamic.

4. If one element of an array is dynamic, all elements of the array are dynamic.

5. An array indexed by a dynamic index expression is dynamic.

6. An if-goto or if-from with dynamic condition is dynamic.

7. A label used in a dynamic if-goto or if-from is dynamic.

8. An if-from with a dynamic label is dynamic.

9. An unconditional jump to a dynamic label is dynamic.

10. start and return are dynamic.

11. Static subexpressions of dynamic expressions or conditions are enclosed in “lift” operators
that indicate that the static values will be inserted as constants during specialisation.

Note that there are three cases for arrays: A fully static array has static elements and is always
indexed using static index expressions. A dynamic array has dynamic element values and is
always indexed by dynamic index expressions (if not, a lift operator is used to make it so).
But we may also have arrays that are statically indexed but contains dynamic element values.
We explain specialisation of these in section 4.5
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We start binding-time analysis from an initial classification of the input variables as static
or dynamic and everything else as static. We then iterate applying the rules above until no
changes occur.

We will later need to add extra rules to ensure reversibility of residual programs, but we
need to describe the specialisation process first to identify the issues.

The multiplication program shown in figure 4(a) with a classified as static and b as dynamic
results in the binding-time-annotated program shown in figure 4(b). A ~ indicates a dynamic
declaration or operation and ^ is the lift operator.

4.3 Specialisation of flowchart programs
As mentioned in section 4, the basic idea is to create specialised basic blocks by combining
labels with static state and specialising the statements of the basic block according to the
static state (and updating the static state when static variables are changed). Additionally,
static jumps can be unfolded. We use the following rules for specialisation:

• Static statements are executed to update the static state.

• Dynamic statements are made into residual statements by evaluating static subexpres-
sions and inserting their values as constants in place of the expressions.

• start is specialised to start.

• An unconditional dynamic label is specialised by combining it with the static state to
construct a new residual label. This is done by hashing the static state to a number and
adding this number as a suffix to the label.

• A dynamic if-from is specialised into a residual if-from consisting of a residual con-
dition and two residual labels constructed like above.

• Static labels and assertions are targets of static jumps, so we describe their treatment
there.

• return is specialised to return. It is verified that all static variables that are not output
variables have the value zero. If not, an error message is issued.

• An unconditional dynamic jump is specialised by combining its label with the static state
to construct a new residual label, as described above for entry points. The specialised
label is used to make a residual unconditional jump. If there is not already a specialised
basic block for the specialised label, one is made.

• A dynamic if-goto is specialised into a residual if-goto consisting of a residual condi-
tion and two residual labels constructed like above. If there are not already specialised
basic blocks for the specialised labels, these are made.

• An static unconditional jump is specialised by finding the basic block that has this label
in its entry point. If the target basic block has an unconditional label as entry, the jump
is unfolded by specialising the body of the target basic block and adding it to the body of
the specialised basic block that contains the static jump and then specialising the jump
of the target basic block. If the target basic block has a two-way assertion as entry, this
will be static (by rules 8 and 9 of the binding-time analysis), so its condition will be
evaluated and checked. If the assertion fails, an error is reported. Otherwise, the jump
is unfolded in the same way a jump to an unconditional label is unfolded.
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• A static if-goto is specialised by first evaluating the condition and selecting the label
that corresponds to the result. It is then unfolded like an unconditional static or dynamic
jump to this label, depending on whether the label is static or dynamic.

Specialisation starts by reading the values of the static input variables and setting the static
state accordingly. Then the block with the start entry point is specialised with this state. This
may trigger specialisation of more basic blocks with different static states. If this eventually
terminates, there will be residual basic blocks for all residual jumps.

4.4 Making the residual program reversible
It is not hard to see that residual statements are reversible, but it is not clear that jumps and
entry points are reversible. We will look at the requirements from section 4.1 in turn:

1. There must be exactly one entry point of the form start.

There can be no jumps to start, so only one residual basic block can have the start
entry point. So this property is preserved.

2. There must be exactly one jump of the form return.

If the basic block that contains the return jump is specialised to two or more different
static states, creating two or more residual basic blocks, there will be two or more return
jumps in the residual program. So we need to remedy this.

3. Each named label must occur in exactly one entry point.

When we make a residual jump to a specialised label, we check if a specialised basic
block for this label already exists, so we will not produce multiple basic blocks with the
same label. Also, if no specialised basic block exists for a residual jump, we will make
one. Hence, each residual label will occur in exactly one entry point.

4. Each named label must occur in exactly one jump.

This requirement forbids two situations: No jumps to a label: This may, actually
happen: When we specialise a dynamic two-way assertion, we produce two residual labels
even though we have seen only a residual jump to one of these. We may eventually see
a jump to the other label, but there is no guarantee of this. So we may end up with a
two-way assertion that has a jump to only one of its labels. Two jumps to the same
label: This might occur if a basic block is specialised to two different static states but
the updates to static variables make the static states at the end of these basic blocks
identical. But since all static updates and swaps are reversible and a basic block is just
a sequence of updates and swaps, this can not happen: Identical static end-states imply
identical static start states.

Hence, we have two problems to fix: There may be several return jumps, and there may be
a two-way assertion that has a jump to only one of its labels.

Multiple return jumps can occur only if the basic block containing the original return
jump is specialised to several different static states. Since a basic block is reversible, this
implies that there are several possible static states at the return jump itself, i.e., at the end
of the program execution. So if we can ensure that there is only one possible static state at
the end of program execution, we can avoid multiple return jumps.
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All variables and array elements that are not part of the program output must, according
to the Janus semantics, be 0 at the end of program execution. So for these, there is only one
possible state at the end of execution. Output variables and arrays can, however, potentially
have several possible values at the end program execution. If a static output variable or array
can have several possible values, we get multiple specialised return jumps.

We avoid this by classifying all output variables that are modified anywhere in the program
as dynamic, so no static output variables are ever updated. Static output variables will, hence,
have the same value throughout execution.

It is common in partial evaluation to classify all outputs as dynamic, so even severe re-
strictions on static outputs is a relaxation compared to the usual case.

The issue of having a two-way entry with a jump to only one of its labels is not so easy
to solve. The obvious solution would be to reduce the two-way assertion to an unconditional
label, hence eliminating the label to which there is no jump. However, this will also eliminate
the assertion, which may be required to preserve semantics (otherwise we might replace a
failing execution by successful termination or nontermination). Another solution is to add a
jump to the label that has none. This can be done in the following way: A residual basic
block of the form if c from l1 l2: s; j where there is a jump only to l1 is replaced by the
two basic blocks l1: if true goto l3 l2 and if c from l3 l2: s; j where l3 is a new label.
The case where there is a jump only to l2 is handled in a symmetric way.

Introducing extra jumps may make residual programs slower than the original programs, so
to avoid this we extend the Janus language with statements of the form assert c (with the ob-
vious semantics). If there is a jump only to l1, we replace the basic block if c from l1 l2: s; j
by the basic block l1: assert c; s; j. If there is a jump only to l2, we replace
if c from l1 l2: s; j with l2: assert !c; s; j.

The statement assert c reverses to itself and it is simple to specialise: It is classified as
static if the condition is static, and a dynamic assert it is made into a residual assert by
replacing the static subexpressions of c by constants.

We can eliminate unconditional jumps to unconditional labels by unfolding the jumps: The
basic blocks e: s1; goto l and l: s2; j are combined to the single basic block e: s1; s2; j.

The program in figure 4(b) can be specialised to a=11 to yield the residual program shown
in figure 5. Note that some two-way assertions have been converted to one-way assertion
statements and unconditional jumps to unconditional labels have been eliminated.

4.5 Partially static arrays
We specialise a array a of size n with dynamic elements and static indices into n integer
variables named a_0 . . . a_m where m = n−1. The l-value a[e] is specialised by evaluating
the static expression e to the value i and returning the residual l-value a_i.

This technique is an instance of partially static data structures [17] and is well known
from, e.g., C-mix as described in section 11.4.1 of [13]. It is useful for, among other things,
specialising interpreters where a single array is used to hold the values of individual variables
in the interpreted program. By splitting the array into scalar variables, the variables of
the interpreted program become individual variables in the residual program obtained by
specialising the interpreter to the interpreted program. For example, the arrays ins[i],
stack[sz] and garbage[sz] in the postfix interpreter in figure 2(c) will be partially static.
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b -> b prod with v ;

start:
assert 0==prod; prod += b;
assert !(prod<b); v += b; b += v; v -= b/2;
assert !(0==prod); prod += b;
assert !(prod<b); v += b; b += v; v -= b/2;
assert !(0==prod);
assert prod<b; v += b; b += v; v -= b/2;
assert !(0==prod); prod += b;
assert !(prod<b)
goto f_11_92636

if prod<b+b from f_11_92636 a_11_92636:
v += b/2; b -= v; v -= b
if odd(b) goto u_11_92636 a_11_92636

u_11_92636:
return

Figure 5: Specialised multiplication program

5 Recovering structured control
The residual program shown in figure 5 is not a Janus program, as it uses unstructured
control where Janus uses structured control statements. In [22] it is shown that any reversible
flowchart can be translated into a program that uses only the reversible control structures
shown in section 2. The translation works by first numbering all labels from 1 to n−1. A
flowchart program

in -> outs with others; blocks

is translated into the structured program

in -> outs with others control;
from control==0 do S(blocks)
loop skip until control==n;
control -= n

where S takes a set of basic blocks and returns a statement:

13

259



a -> b;

start: goto x

if b==0 from x y
a -= 1; b += 1
if a==0 goto z y

z: return

(a) Simple flowchart
program

a -> b;

from b==0
a -= 1; b += 1

loop skip
until a==0

(c) Natural structure

a -> b with control;

from control==0 do
if control==0 then

control+=1
else

if control==1 || control==2 then
if control==1 then skip
else control-=1 fi b==0;
a -= 1; b += 1;
if a==0 then control+=2
else control+=1 fi control==3

else
control+=1

fi control==2 || control==3
fi control==1

loop skip
until control==4;
control-=4

(b) Structured with control variable

Figure 6: Two ways of structuring a flowchart program

S(∅) = skip
S({e: s; j} ∪ B) = E s; C else S(B) fi J

where (E, l) = SE(e)
(C, J) = SJ(j, l)

SE(start) = (if control==0 then, 0)
SE(l) = (if control==l then, l)
SE(if c from l1 l2) = (if control==l1 || control==l2 then

if control==l1 then skip
else control += l1-l2 fi c; ,

l1)

SJ(return, l) = (control +=n-l, control==n)
SJ(goto l1, l) = (control += l1-l, control==l2)
SJ(if c goto l1 l2, l) = (if c then control += l1-l

else control += l2-l
fi control==l1 ,
control==l1 || control==l2)

As an example, the flowchart program in figure 6(a) is translated into the structured program
in figure 6(b). This structure is, however, not natural and the addition of the extra control
variable and the branching on this adds overhead. The flowchart program shown in figure 6(a)
has a much simpler and more efficient structured equivalent shown in figure 6(c)

Ideally, we would like to have a translation that can find a structured program such that
the sequences of variable updates and tests made by the structured program is the same as
the sequence made by the flowchart program when both are executed with the same inputs.
Intuitively, this means that no overhead is introduced by structuring the program.

There has (in the context of decompilation) been some work on recovering structured
control from flowcharts [2, 21, 7, 8], but this has been done in a non-reversible setting. To our
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Figure 7: Unstructured flowchart

knowledge, there is no similar work on recovering reversible control.
It has been shown [2] that general control flow can not always be translated into structured

control without adding extra variable updates, but again, this result is for general, irreversible
control. Since reversible flowcharts are quite restricted compared to general flowcharts, it is
not obvious that the result carries over: Unrestricted flowcharts that can not be structured
might not be realisable as reversible flowcharts. We will, however, below show a similar result
for reversible programs.

We first define evaluation equivalence of flowchart programs.

Definition 1 Two reversible flowchart programs are evaluation equivalent if they both execute
the same sequence of tests and state modifiers when run on the same inputs. We only consider
terminating executions, so the sequences are finite. A state modifier is an update or swap. A
test is a condition in an assert statement, a conditional jump or a two-way entry point. If a
condition c evaluates to false, it is shown as c in the sequence. We consider c equivalent to !c
and !c equivalent to c, so it is possible to swap the two branches of a conditional jump.

A structured program is deemed to be evaluation equivalent to the flowchart program obtained
by the translation shown in section 4.1 and, by transitivity, to all flowchart programs evaluation
equivalent to this.

The proof in [2] that not all control flow can be made structured shows that a specific
unstructured control-flow graph has no structured evaluation equivalent program (using a
somewhat different notion of evaluation equivalence).

Consider the reversible flowchart in figure 7. The true exits/entries of conditional jumps
and entry-points are to the left. There are three possible paths through this flowchart:

1 : c1, s1, c3, s5, c4

2 : c1, s2, c2, s3, c3, s5, c4

3 : c1, s2, c2, s4, c4

Let us see which structured programs can realise the above sequences.
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Since all sequences start with c1 or c1, c1 must be the initial condition of an if-then-else-fi
construct: An assert statement or the entry condition of a loop might have both outcomes,
but would terminate execution after one of these. An if-then-else-fi construct must have
a closing condition (assertion). The only condition (apart from c1) that occurs in all the
above sequences is c4, so this must be it. So, the structured program must be of the form
if c1 then T else E fi c4, though with the possibility that one or both of c1 and c4 is
negated. We can without loss of generality assume that c1 is not negated (we could swap the
branches if it was), so E must be able to realise the rest of sequence 1. It ends in c4, so the
exit assertion must be c4 (without negation). Sequence 2 and 3 start with c1, so they both
go to the false branch. They, however, end with different values for the c4 condition, which
contradicts the assumption that they are in the same branch of the conditional.

So if we can find actual conditions and statements such that all three sequences can be
realised, we have an example of a flowchart that has no structured evaluation equivalent using
the control structures of Janus. If we use the following instances of the tests and conditions:

c1 = a == 0 s1 = a += 1
c2 = a == 0 s2 = a -= 1
c3 = a == 1 s3 = a += 2
c4 = a < 2 s4 = a += 2

s5 = a -= 1

then sequence 1 is followed when a is 1 initially, sequence 2 is followed when a is 2 initially and
sequence 3 is followed when a is 3 initially. Hence, we have a flowchart that is not evaluation
equivalent to any structured program.

The above is just one example of a flowchart that has no evaluation equivalent structured
program.

So we may sometimes need to introduce extra state modifiers or tests when re-structuring
residual programs. But we want to avoid this whenever we can.

We use a restructuring methods based on recognising subsets of basic blocks that cor-
respond to structured statements and then replace these subsets by basic blocks that use
structured statements.

The following rules do this for 17 different patterns of basic blocks. We apply these until
no rule applies to the remaining set of basic blocks.

1. If the set of basic blocks contains two blocks:
(e: s1; goto l) (l: s2; j)
combine these to the single basic block
(e: s1; s2; j)

2. If the set of basic blocks contains four blocks:
(e: s1; if c1 goto l1 l2) (l1: s2; goto l3) (l2: s3; goto l4) (if c2 from l3 l4: s4; j)
combine these into the single basic block
(e: s1; if c1 then s2; else s3; fi c2; s4; j)

3. If the set of basic blocks contains three blocks
(e: s1; if c1 goto l1 l2) (l1: s2; goto l3) (if c2 from l3 l2: s3; j)
combine these into a single basic block
(e: s1; if c1 then s2; else skip fi c2; s3; j)
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4. If the set of basic blocks contains three blocks
(e: s1; if c1 goto l1 l2) (l2: s2; goto l3) (if c2 from l1 l3: s3; j)
combine these into a single basic block
(e: s1; if c1 then skip else s2; fi c2; s3; j)

5. If the set of basic blocks contains two blocks
(e: s1; if c1 goto l1 l2) (if c2 from l1 l2: s2; j)
combine these into a single basic block
(e: s1; if c1 then skip else skip fi c2; s2; j)

6. If the set of basic blocks contains four blocks
(e: s1; if c1 goto l1 l2) (l1: s2; goto l3) (l2: s3; goto l4) (if c2 from l4 l3: s4; j)
combine these into a single basic block
(e: s1; if c1 then s2; else s3; fi !c2; s4; j)

7. If the set of basic blocks contains three blocks
(e: s1; if c1 goto l1 l2) (l1: s2; goto l3) (if c2 from l2 l3: s3; j)
combine these into a single basic block
(e: s1; if c1 then s2; else skip fi !c2; s3; j)

8. If the set of basic blocks contains three blocks
(e: s1; if c1 goto l1 l2) (l2: s2; goto l3) (if c2 from l3 l1: s3; j)
combine these into a single basic block
(e: s1; if c1 then skip else s2; fi !c2; s3; j)

9. If the set of basic blocks contains two blocks
(e: s1; if c1 goto l1 l2) (if c2 from l2 l1: s2; j)
combine these into a single basic block
(e: s1; if c1 then skip else skip fi !c2; s2; j)

10. If the set of basic blocks contains two blocks
(if c1 from l1 l2: s1; if c2 goto l3 l4) (l4: s2;goto l2)
combine these into a single basic block
(l1: from c1 do s1 loop s2 until c2; goto l3)

11. If the set of basic blocks contains a block
(if c1 from l1 l2: s; if c2 goto l3 l2)
replace this by the basic block
(l1: from c1 do s loop skip until c2; goto l3)

12. If the set of basic blocks contains two blocks
(if c1 from l1 l2: s1; if c2 goto l4 l3) (l4: s2;goto l2)
combine these into a single basic block
(l1: from c1 do s1 loop s2 until !c2; goto l3)
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13. If the set of basic blocks contains a block
(if c1 from l1 l2: s; if c2 goto l2 l3)
replace this by the basic block
(l1: from c1 do s loop skip until !c2; goto l3)

14. If the set of basic blocks contains two blocks
(if c1 from l2 l1: s1; if c2 goto l3 l4) (l4: s2;goto l2)
combine these into a single basic block
(l1: from !c1 do s1 loop s2 until c2; goto l3)

15. If the set of basic blocks contains a block
(if c1 from l2 l1: s; if c2 goto l3 l2)
replace this by the basic block
(l1: from !c1 do s loop skip until c2; goto l3)

16. If the set of basic blocks contains two blocks
(if c1 from l2 l1: s1; if c2 goto l4 l3) (l4: s2;goto l2)
combine these into a single basic block
(l1: from !c1 do s1 loop s2 until !c2; goto l3)

17. If the set of basic blocks contains a block
(if c1 from l2 l1: s; if c2 goto l2 l3)
replace this by the basic block
(l1: from !c1 do s loop skip until !c2; goto l3)

The important rules are 1, 2 and 10, which are essentially inverses of the translation from
section 4.1. The remaining rules are special cases where one branch of a conditional or part
of a loop is empty or where labels in if-goto or if-from are swapped (so conditions need to
be negated).

It is easy to see that these rules preserve (strong) evaluation equivalence. Since we negate
some conditions, we need the equivalence of c and !c and of !c and c that we allowed in the
definition of evaluation equivalence.

The reversibility requirement actually makes some things simpler than in the irreversible
case, as we know that there can not be multiple jumps to the same label. In the irreversible
case we would, for example, need a side condition to rule 1 saying that there are no other
jumps to l. Also, since there are exactly two occurrences of each label, it is easy to verify that
the rules do not overlap, so they can be applied in any order.

If application of the rules reduces the set of basic blocks to a single basic block
(start: s; return), we have a single structured Janus statement s. If not, we can either
declare failure to structure the program or add the extra control variable as described above.
Currently, we admit failure and return a partially unstructured program, as our (extended)
Janus compiler allows programs to mix structured and unstructured control. This is easy
enough to change if we need to use an unextended Janus compiler.

As an example, figure 8 shows a restructured version of the residual program in figure 5.
Also, if we translate any of the programs in figure 2 into flowchart form and restructure the
result, we get the original structure back.
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b -> b prod with v ;

assert 0==prod; prod += b;
assert !(prod<b); v += b; b += v; v -= b/2;
assert !(0==prod); prod += b;
assert !(prod<b); v += b; b += v; v -= b/2;
assert !(0==prod);
assert prod<b; v += b; b += v; v -= b/2;
assert !(0==prod); prod += b;
assert !(prod<b);
from prod<b+b do

v += b/2; b -= v; v -= b
loop

skip
until odd(b)

Figure 8: Restructured specialised multiplication program

5.1 Replacing jumps by procedure calls
In [8], it is suggested that unstructured control that can not be reduced to structured con-
trol without adding variables can instead be replaced by mutually recursive procedure calls.
The idea is that a tail call is very much like an unstructured goto. The method replaces
every remaining basic block with a procedure and all remaining jumps by tail calls to these
procedures. This works well because basic blocks in irreversible languages are headed by un-
conditional labels (that translate easily into procedure names) and both unconditional and
conditional jumps can be translated into tail calls. In our reversible flowchart language, we
have two issues not present in irreversible languages:

1. Basic blocks can be headed by two-way assertions.

2. In Janus, the branches of an if-then-else-fi are not in tail-call position, even if the
whole conditional statement is. This is because the fi-condition needs to be tested after
the chosen branch completes.

Two-way assertions are not difficult to handle: We just make two procedures that each test the
condition (positively and negatively) and call a procedure for the common body. But we can
not translate if c goto l1 l2 into if c then call p1 else call p2 fi c′ because there might be
no suitable condition c′, and even if there is, there is no obvious way to find it.

Hence, we believe that it is not workable to translate unstructured control flow into tail-
recursive procedure calls.

6 Experiments
We have implemented (in Standard ML) a partial evaluator using the methods described in
this paper.

We have used the partial evaluator to specialise a few Janus programs. For each of these,
the table in figure 9 shows the number of non-blank lines in the original Janus program, the
flowchart form of the program and the residual program.

fib is the program from figure 2(a). It is specialised to n=10, so the residual program
is run without inputs. encrypt is a simple encryption program. The program is specialised
to the key (which is used both for encryption and decryption). During specialisation, a loop
is unrolled, so the residual program is quite large. postfix is the program from figure 2(c)
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Program Source lines Flowchart lines Residual lines
fib 9 12 33
multiply 23 30 28
encrypt 15 23 171
postfix 46 74 16
control 17 39 6
dfa 26 29 48

Program Original steps Residual steps
fib 147 95
multiply 160 108
encrypt 442 354
postfix 998 70
control 558 145
dfa 510 216

Figure 9: Size and speed

with the procedure calls manually unfolded (as the specialiser doesn’t handle procedure calls
yet). postfix uses a partially static array for the input values, so the residual program has
individual variables for these. The stacks are also partially static, so the stack elements become
individual variables. The interpreter is specialised with respect to a postfix expression with
two inputs and five operations. control is the program from figure 6(b). This is specialised
with no static inputs, but the control variable is static. The residual program is identical to
the program in figure 6(c). The difference in running time show the overhead of structuring a
program using a control variable. dfa is an interpreter for reversible DFAs. It is specialised
to a DFA that recognises bit strings that are divisible by 3. The restructurer was not able to
restructure the residual program, so the numbers for the residual program are for the flowchart
form.

We compile Janus programs to MIPS code that is run on the simulator MARS [20]. Figure 9
show the instruction counts of the original and residual programs. As usual with partial
evaluation, the most dramatic speedups are found when specialising interpreters.

7 Conclusion and future work
We have made a partial evaluator for the reversible language Janus with the exception of
procedure calls. It is to our knowledge the first partial evaluator for a deterministic reversible
programming language.1

Polyvariant program-point specialisation can be applied to Janus, but the reversibility
requirement added some complications, which we have solved.

The residual programs produced by the specialiser use unstructured control flow where
Janus uses structured control flow, so we have devised a method to restructure residual pro-
grams from flowchart form to using the reversible control structures of Janus. This is not
always possible to do without introducing extra variables. Currently, the specialiser will re-
turn partially unstructured programs in such cases, but it is easy to add an extra pass to

1Pure logic languages can be considered reversible and partial evaluators for such exist [15].
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structure these using a control variable. Since this adds overhead and our Janus compiler
can handle unstructured programs, we have not done so.

We have in this paper not handled procedure calls. It is, as such, not difficult to specialise
procedure calls: Procedures must, like the program, have a single return jump. For the
program, we ensured this by disallowing modification of static output variables, so there is
only one possible static state at program end (all non-output variables are zero at program
end). There is no requirement that variables are zero at the end of a procedure, so to ensure
that there is only one possible static state at procedure end, the equivalent solution is to
disallow modification of all static variables inside a procedure. This means that a procedure
call can not change static state, which makes specialisation easy. The restriction against
modifying static state makes this of limited use, though. We will look at better ways of
handling procedure calls in a future paper.

References
[1] Samson Abramsky. A structural approach to reversible computation. Manuscript, Oxford

University Computing Laboratory, 2001.

[2] Edward A. Ashcroft and Z Manna. The translation of ”go to” programs to ”while” pro-
grams. Technical report, Stanford University, Stanford, CA, USA, 1971.

[3] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal on
Computing, 18(4):766–776, 1989.

[4] Harry Buhrman, John Tromp, and Paul Vitányi. Time and space bounds for re-
versible simulation. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, edi-
tors, Automata, Languages and Programming. Proceedings, LNCS 2076, pages 1017–1027.
Springer-Verlag, 2001.

[5] Mikhail A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta
Informatica, 21:473–484, 1984.

[6] Niels H. Christensen, Robert Glück, and Søren Laursen. Binding-time analysis in partial
evaluation: one size does not fit all. In D. Bjørner, M. Broy, and A. V. Zamulin, edi-
tors, Perspectives of System Informatics. Proceedings, LNCS 1755, pages 80–92. Springer-
Verlag, 2000.

[7] Cristina Cifuentes. Reverse compilation techniques. PhD thesis, Queensland University
of Technology, http://www.itee.uq.edu.au/~cristina/dcc.html#thesis, 1994.

[8] Cristina Cifuentes. Structuring decompiled graphs. In Proceedings of the International
Conference on Compiler Construction, pages 91–105. Springer Verlag, 1996.

[9] Richard P. Feynman. Feynman Lectures on Computation, chapter 5 Reversible computa-
tion and the thermodynamics of computing, pages 137–184. Addison-Wesley, 1996.

[10] Arne J. Glenstrup and Neil D. Jones. BTA algorithms to ensure termination of off-
line partial evaluation. In Dines Bjørner, Manfred Broy, and Igor V. Pottosin, editors,
Perspectives of System Informatics. Proceedings, LNCS 1181, pages 273–284. Springer-
Verlag, 1996.

21

267



[11] John Hatcliff, Torben Æ Mogensen, and Peter Thiemann, editors. Partial Evaluation.
Practice and Theory. LNCS 1706. Springer-Verlag, Berlin, Heidelberg, New York, 1999.

[12] Neil D. Jones and Arne Glenstrup. Program generation, termination, and binding-time
analysis. In D. Batory, C. Consel, and W. Taha, editors, Generative Programming and
Component Engineering. Proceedings, LNCS 2487, pages 1–31. Springer-Verlag, 2002.

[13] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

[14] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5(3):183–191, 1961.

[15] Michael Leuschel. Logic program specialisation. In Partial Evaluation - Practice and
Theory, DIKU 1998 International Summer School, pages 155–188, London, UK, 1999.
Springer-Verlag.

[16] C. Lutz. Janus: a time-reversible language. A letter to Landauer.
http://www.cise.uf1.edu/~mpf/rc/janus.html, 1986.

[17] Torben Æ. Mogensen. Partially static structures in a self-applicable partial evaluator.
In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation and
Mixed Computation, pages 325–347. North-Holland, 1988.

[18] Kenichi Morita, Akihiro Shirasaki, and Yoshifumi Gono. A 1-tape 2-symbol reversible
turing machine. IEICE Transactions, E72(3):223–228, 1989.

[19] Tommaso Toffoli. Reversible computing. In J. W. de Bakker and Jan van Leeuwen,
editors, Automata, Languages and Programming, volume 85 of Lecture Notes in Computer
Science, pages 632–644. Springer-Verlag, 1980.

[20] Kenneth Vollmar and Pete Sanderson. MARS: An education-oriented MIPS assembly
language simulator. ACM SIGCSE Bulletin, 38(1):239–243, 2006.

[21] M. H. Williams. Generating structured flow diagrams: the nature of unstructuredness.
Computer Journal, 20(1):45–50, 1977.

[22] Tetsuo Yokoyama, Holger Boch Axelsen, and Robert Glück. Reversible flowchart lan-
guages and the structured reversible program theorem. In Aceto L. et al., editor, Au-
tomata, Languages and Programming (ICALP), LNCS 5126, pages 258–270. Springer-
Verlag, 2008.

[23] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles of a reversible
programming language. In Proceedings of the 5th conference on Computing frontiers, CF
’08, pages 43–54, New York, NY, USA, 2008. ACM.

[24] Tetsuo Yokoyama and Robert Glück. A reversible programming language and its invertible
self-interpreter. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, pages 144–153, New York,
NY, USA, 2007. ACM.

22

268



On Determination of
Backward Graph Transformation

(Ongoing Work Report)

Zhenjiang Hu

National Institute of Informatics

Joint Work with BiG Team Members

January 13, 2011

Zhenjiang Hu On Determination of Backward Graph Transformation (Ongoing W

BiG: NII Grand Challenge Project (2008-)

A Bidirectional Graph (Model) Transformation Framework
for Evolutional Software Development

Zhenjiang Hu On Determination of Backward Graph Transformation (Ongoing W

Bidirectional Transformation

src tgt

tgt’

mod

src’

get

put

It consists of a pair of computation forward and backward.
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Stability

No change on the target implies no change on the source.

src tgt

tgt

no modification

src

get

put

put(get(s), s) = s
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Reflectivity

Permitted changes on the target should be reflected to the source.

src tgt

tgt’

mod

src’

get

put

get(put(t ′, s)) = t ′
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Applications
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Challenge: from Trees to Graphs

We aim at a language for bidirectional model-driven software
developemnt (or roundtrip software development).
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Two Approaches to Bidirectional Programming

Design a domain-specific combinator library
[Lens: POPL’95, POPL’98, ICFP’08, ICFP’10]

Primitive bidirectional computing functions
Combinators to compose bidirectional computations

Automatic bidirectionalization of
A core ATL [Xiong+: ASE’07]
A first-order FPL [Matsuda+: ICFP’07]
A graph query language UnQL [Hidaka+: ICFP’10]

ASSUMPTION:
Each program has fixed computation behavior for get and put.
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Not a practical assumption!

src tgt

tgtsrc

get

put

Since get is genereally non-injective, many suitable puts
correspond to one get, each being useful in one context.
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Inherited Ambiguity in Backward Transformation

Consider the relation input database EMP :

EMP = { No
Name
Location
BBTeam

}

No Name Location BBTeam
1 Tanaka Tokyo Yes
2 Kato Tohoku Yes
3 Sato Tokyo No

Zhenjiang Hu On Determination of Backward Graph Transformation (Ongoing W

Consider a forward transformation defined by

Select ∗
From EMP
Where Location = ”Tokyo”

which produces the view:

No Name Location BBTeam
1 Tanaka Tokyo Yes
3 Sato Tokyo No

What is a suitable backward transformation if we delete employee
#1 in the view?

⇒ delete employee #1
⇒ move employee #1 from Tokyo to Kyoto
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Consider another forward transformation defined by

Select ∗
From EMP
Where BBTeam = Yes

which produces the view:

No Name Location BBTeam
1 Tanaka Tokyo Yes
3 Kato Tohoku Yes

What is a suitable backward transformation if we delete employee
#1 in the view?

⇒ delete employee #1?
⇒ change the BBTeam of employee #1 to No?
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Rather than fixing a backward transformation, is there a
way to determine a suitable backward transformation at
view definition time?

From Simon Peyton Jones:

If you find a new problem, there may have been some
solutions (or ideas) given by DB people.
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Keller’s Dialog Approach

Mapping a query (forward transformation) to the algebra
consisting of selection, projection and join (Stanard).

Enumerating finite backward transformations for selection,
projection and join (PODS’85).

Dialoging with view designers to choose a backward
transformation statically by traversing over the syntactic tree
of an algebra expression (VLDB’86).
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Our Approach

Design a graph algebra such that

it is powerful enough to be used as the base algebra for graph
querying (transforming);

each construct has enumerable choices for backward
transformation.
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Can we use the existing UnCAL as our graph algebra?

e ::= {} | {l : e} | e ∪ e | &x := e | &y | ()
| e ⊕ e | e @ e | cycle(e) { constructor }
| $g { graph variable }
| if l = l then e else e { conditional }
| rec(λ($l , $g).e)(e) { structural recursion application }

We can easily enumerate suitable backward transformation for all
constructs except for structural recursion [ICFP 2010]

For instance, if has several possiblities for backward transformation
is some modification on the view is applied.
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What is the problem with structural recursion?
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Structural Recursion: Manipulating Graphs

Structural Recursion:

f ({}) = {}
f ({l : g}) = e[l , g ] @ f (g)
f (g1 ∪ g2) = f (g1) ∪ f (g2)

Or written as:

sfun f ({l : g}) = e[l , g ] @ f (g)

Or written as:
f = rec(λ(l , g).e[l , g ])
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An Example

sfun a2d xc ({l : g}) = if l = a then {d : a2d xc(g)}
else if l = c then a2d xc(g)
else {l : a2d xc(g)}

i.e.,
a2d xc = rec(λ(l , g). if l = a then {d : &}

else if l = c then &

else {l : &})
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A structural recursion could be quite complicated

Possible duplicated use of g :

sfun f ({l : g}) = e[l , g ] @ f (g)

f = rec(λ(l , g).e[l , g ])

⇒ Backward transformation may introduce side-effect
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Nested recursion:

f = rec(λ(l , g). · · · rec(λ(l ′, g ′). · · · ) · · · )

⇒ Backward transformation needs to care about context
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Nested traversals over multiple graphs::

rec(λ(l , g). · · · rec(λ(l , g). · · · )(db1) · · · )(db2)

⇒ Backward transformation needs to consider data joining.
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Refining UnCAL

Is it possible to define a graph algebra which only considers the
following simple structural recursion?

sfun f ({l : g}) = e[l ] @ f (g)

f = rec(λ(l , g).e[l ])

The backward behavior of this simple structural recursion is
uniquely determined by that of e[l ].

Assumption: the unit for insertion/deletion on the view should
match with e[l ].
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Simplifying Structural Recursions

Possible duplicated use of g :

sfun f ({l : g}) = e[l , g ] @ f (g)

f = rec(λ(l , g).e[l , g ])

⇑

tupling f with id
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Nested recursion:

f = rec(λ(l , g). · · · rec(λ(l ′, g ′). · · · ) · · · )

⇑

Unnesting / lambda lifting

µf (X ) = {(v , w) | v ← X , w ← f (v)}
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Nested traversals over multiple graphs:

rec(λ(l , g). · · · rec(λ(l , g). · · · )(db1) · · · )(db2)

⇑

joining variables

X "# Y = {(v , w) | x ← X , w ← Y }
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Main Results

Theorem (Expressiveness)

Any UnQL expression can be compiled to the following graph
algebra:

t ::= any graph constructor
| $g
| if l = l then t1 else t2
| f t
| t1 "# t2
| µf (t)

where f is a simple structural recursion.
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Theorem (Enumerability of Backward Transformations)

Suitable backward transformations for each construct of the
following graph algebra is enumerable.

t ::= any graph constructor
| $g
| if l = l then t1 else t2
| f t
| t1 "# t2
| µf (t)

where f is a simple structural recursion.
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Conclusion

We show that Keller’s dialogue approach to determining
backward transformations can be generalized from relational
data to graph data, by defining a new graph algebra:

sufficient expressive power
enumerable backward transformations

The new algebra can be considered as a combination of
structural recursion with a general tree algebra.
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More Information about BiG

The project page contains all published papers, system demo, and

the source codes of the GRoundTram system .
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