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Abstract

This is a technical report summarizing recent results on a statistical shape
analysis framework for tree-like shapes. A theoretical approach to the space of
tree-like shapes and how its geometry can be utilized for tree-shape statistics is
found in Chapter 1. In Chapter 2 we discuss several approaches to computing
average tree-shapes.



Chapter 1

Geometry and statistics in
spaces of tree-like shapes

In order to develop statistical methods for shapes with a tree-structure, we con-
struct a shape space framework for tree-like shapes and study metrics on the
shape space. The shape space has singularities, which correspond to topologi-
cal transitions in the represented trees. We study two closely related metrics,
TED and QED. The QED is a quotient euclidean distance arising from the new
shape space formulation, while TED is the classical tree edit distance. Using
Gromov’s metric geometry we gain new insight into the geometries defined by
TED and QED. In particular, we show that the new metric QED has nice geo-
metric properties which facilitate statistical analysis, such as existence and local
uniqueness of geodesics and averages. TED, on the other hand, has algorithmic
advantages, while it does not share the geometric strongpoints of QED. We pro-
vide a theoretical framework as well as computational results such as matching
of airway trees from pulmonary CT scans and geodesics between synthetic data
trees illustrating the dynamic and geometric properties of the QED metric.

Figure 1.1: Examples of anatomical tree-like structures are airways and blood
vessels in lungs [PAD+09].
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1.1 Introduction

Trees are fundamental structures in nature, where they appear as delivery sys-
tems for air and fluids, as skeletal structures, or describing hierarchies. Ex-
amples encountered in image analysis and computational biology are airway
trees [TMP+05, KKNN06, MKS+09, BLWH06, vGBvR08], vascular systems [CAM+05,
CFM01, MBK+09, SBK+10], shock graphs [SKK04, BWL+09], scale space hi-
erarchies [KF05, DPS+09] and phylogenetic trees [BHV01, OP11].

In the past 20 years, extensive work has been done related to the com-
parison of such structures in terms of matching [SBK+10, CAM+05, KSDD03,
MKS+09, TMP+05], object recognition [DPS+09, KSK01] and machine learn-
ing [RB09b, FVS+10, JO09, JO10] based on inter-tree distances. However, the
existing tree-distance frameworks are algorithmic rather than geometric. As we
shall see, this yields problems even in the basic problem of finding the aver-
age of two tree-shapes. There exists no principled approach to studying the
space of tree-structured data, and as a consequence, attempts to find average
trees or perform a modes of variation analysis are not well-defined. Statistical
methods for tree-structured data would have endless applications. For instance,
in medical image analysis one could better study the documented changes in
airway-shape geometry and structure in COPD patients [WDE+09, SLD+11] in
order to improve tools for computed-aided diagnosis and prognosis.

In this paper we study shapes with a tree-like structure, represented as sets
of embedded curves connected by a hierarchical rooted tree. In analogy with
the well-known statistical shape analysis for curves and surfaces, we define a co-
herent space of tree-like shapes, and give it a metric, called Quotient Euclidean
Distance (QED), where distances are realized as lengths of geodesic deforma-
tions.

One of our goals is to be able to compute means of sets of tree-like shapes.
In as simple settings as two-point datasets, means are closely connected to
geodesics, in the sense that the midpoint of a geodesic from a to b will be
a mean for the dataset {a, b}. If there is more than one geodesic connecting
a to b, with different midpoints, then there will also be more than one mean
describing the dataset. Because of this, (local) uniqueness of geodesics is crucial
to having well-defined means. Using methods from Gromov’s metric geometry,
which are novel in computer vision and pattern recognition, we show that locally,
geodesics are unique, paving the road for further statistical analysis. We show
that in the local situation, we can uniquely define several concepts of average
tree.

Moreover, we see how a natural variation of the QED metric on the de-
fined shape space gives rise to the classical Tree Edit Distance (TED) metric,
and through an analysis of the tree-space geometry we see how TED does not
give the same natural statistical properties as QED. This explains why using
TED for computing mean trees must always be accompanied by a carefully en-
gineered choice of edit paths in order to give well-defined results; choices which
can yield average trees which are substantially different from the trees in the
dataset [TK10].

In short, our paper provides a principled approach to tree-shape analysis,
based on a shape space construction for tree-like shapes. Within this shape
space, we are able to naturally define and compare the two natural tree-shape
metrics TED and QED, and prove that QED has some very desirable properties
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for statistical analysis, that TED does not share. As a result, we are able to
investigate statistical methods for tree-like structures which have previously not
been possible, such as different concepts of average tree.

1.1.1 A space of tree-like shapes

In a continuous space of tree-like shapes we should be able to continuously
deform any given tree-shape into any other by traveling along a path in tree-
shape space that connects the two shapes. Holding on to this idea, we can get
an intuitive idea of how the tree-space should be connected.

First consider the space of all rooted tree-shapes with a given tree-topological
structure T = (V,E, r). Assume that the edges E in the tree have a fixed
numbering, and that the edge shapes are described by a vector in RN , for
instance consisting of a number of landmark points. Now, any such tree can be
described by a long vector in

∏
e∈E RN .

Next, consider the space of all tree-shapes in the whole entire world. This set
can be partitioned into an infinite set C of classes C, where each class contains
all tree-shapes with a given tree-topological structure TC = (VC , EC , rC). Now
the tree-space is a disjoint union X =

⊔
C∈C

∏
e∈EC

RN , and every tree-shape
you can come up with is represented by a point in X.

However, there is a problem with this space X. Consider a class C whose
tree-shapes all have the same tree topology T , and consider a sequence of trees
in C where a certain edge is becoming smaller and smaller, converging towards
the edge described by a zero vector. Geometrically, this means that the edge is
disappearing, and we are approaching a tree-shape with a different tree topology.
We can similarly approach the same tree-shape through sequences of trees with
a third tree topology, and so on. This thought experiment intuitively illustrates
how the different components of X should be glued together in order to form a
connected tree-shape space.

Note, in particular, that the components are glued together along a subspace
in which a new tree topology is found, which is different from the topology of
the trees in the different sequences. In other words, the tree-space is partitioned
into components of different dimension, in which trees with different topological
structures are found, which intersect each other in yet new components – see
fig. 1.2a for an illustration. As seen in the figure, a path in tree-space corre-
sponds to a tree-shape deformation, and passing through a lower-dimensional
component corresponds to an internal structural transition in the deforming
tree. These structural transitions are key to defining geodesics between the
tree-shapes, as we shall do later on in the paper.

The main theoretical contributions of the paper are found in sections 1.3
and 1.4. The formal construction of the tree-shape space is the topic of sec-
tion 1.3, whose main result is theorems 1.4 and 1.6. These theorems state that
we can, indeed, form a geometric tree-shape space and endow it with two natural
metrics which can both be realized as lengths of geodesic tree-shape deforma-
tions. Moreover, we see in section 1.3.5 that one of this metrics is the classical
TED. This illustrates, in particular, that the relatively complicated construction
of the tree-shape space is not a hindrance for finding intuitive algorithms for
tree-distance computations. In theorems 1.7 and 1.16 we show that the second
metric, QED, has geometric properties that make it particularly well suited for
statistical analysis. TED does not share these properties.
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(a) (b) (c)

Figure 1.2: (a) Tree-shapes with different topology live in different components
of tree-space. These are glued together along subsets with collapsed versions of
the tree-shapes. (b) The TED moves: Remove an edge a, add an edge b, deform
an edge c. (c) In graph representations [JO09], zero branch descriptors de-
note ”missing” branches (left), whereas in our tree representation they describe
collapsed branches, (right). This induces very different spaces of graphs/trees.

The paper is organized as follows: In section 1.2 we give an overview of
related work. The tree-space is defined in section 1.3, and its statististical
properties are analyzed in section 1.4. Using Gromov’s approach to metric
geometry [Gro87] we gain insight into the geometric properties of two different
metrics; one which is essentially Tree Edit Distance (TED) and one which is a
quotient euclidean distance (QED). We pay particular respect to the properties
of geodesics and averages, which are essential for statistical shape analysis.
In section 1.5 we discuss how to overcome the computational complexity of
both metrics. A simple QED approximtion is discussed in Section 1.6, and in
Section 1.7 we illustrate the properties of QED both by computing geodesics and
means for synthetic planar data trees as well as by computing QED distances
for sets of 3D pulmonary airway trees which show promising tendencies for
classification based on the QED metric.

1.2 Related work

Metrics on sets of tree-structured data have been studied by different research
communities for the past 20 years. The best-known approach in the computer
vision community is perhaps Tree Edit Distance (TED), which has been used
extensively for shape matching and recognition based on medial axes and shock
graphs [SKK04, KTSK00, SKK02, KSK01, TK10, TH03]. TED and more gen-
erally graph edit distance have also been popular in the pattern recognition
community, and are still used for most modern distance-based pattern recog-
nition approaches to trees and graphs [FVS+10, RB09b, RB09a]. One of our
main goals is, however, to develop a framework analogous to the classical shape
statistics [Ken84, HHM10] to tree-like shapes; particularly in order to define and
compute average tree-shapes and analyze modes of variations in a style similar
to PCA.

In TED, the distance between two trees is the minimal total cost of deforming
the first tree into the second, using tree basic operations: remove an edge, add
an edge, and deform an edge, see fig. 1.2b. The cost of changing an edge into
another is, in this paper, the Euclidean distance between their landmark point
vectors, both aligned so that the first landmark point is at the origin. Removing
an edge is equivalent to deforming it to a collapsed edge, and adding an edge is
the inverse of removal. It is easy to see that the TED metric will nearly always
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have infinitely many edit paths, or geodesics, between two given trees.
As a result, even the problem of finding the average of two trees is no longer

well posed. Without local uniqueness of geodesics it becomes hard to meaning-
fully define and compute average shapes or modes of variation. This problem can
be solved to some extent by choosing a preferred edit path [FVS+10, RB09b],
but there will always be a risk of having chosen the ”wrong” edit path. Trinh
and Kimia [TK10] have recently used TED for computing average medial axes
using the simplest possible edit paths, leading to average shapes which are sub-
stantially different from most of the dataset shapes.

Statistics on tree-structured objects have recently sparked a growing interest
in the statistical community. Wang and Marron [WM07] have studied metric
spaces of trees and defined a notion of average tree called the median-mean as
well as a version of PCA, which finds modes of variation in terms of so called
tree-lines, encoding the maximum amount of structural and attributal varia-
tion. Aydin et al. [APW+09] extend this work by finding efficient algorithms
for computing the PCA. However, the metric defined by Wang and Marron
does not define a natural geodesic structure on the space of trees with varying
topological structure, as it places a very large emphasis on the tree-topological
structure of the trees. More precisely, the metric has discontinuities in the sense
that a sequence of trees with a shrinking branch will not converge to a tree that
does not have that branch. Wang and Marron analyze datasets consisting of
brain blood vessels, which are trees with few, long branches, and for such data
the strong emphasis on tree topology might work well. However, this metric
is not suitable for studying large trees with topological variations and noise,
such as airways or most other tree-structures appearing in medical images, as
the metric punishes structural changes much harder than shape variation with
constant tree-topological structure. Likewise, their PCA mainly encodes com-
binatorics, whereas in a continuous space of attributed trees we would like the
interplay between tree topology and attributes (in our case, branch geometry)
to be stronger.

A rather different approach is that of Jain and Obermayer [JO09, JO10],
who define metrics on attributed graphs. The graphs are represented using
incidence matrices, and the space of graphs is defined as the quotient of the
Euclidean space of incidence matrices by the group of vertex relabelings. The
graph-space inherits a metric from Euclidean space, which gives it the structure
of an orbifold. Means are computed using Lipschitz analysis, giving fast compu-
tations. The graph-space construction by Jain and Obermayer is similar to the
tree-space presented in this paper in the sense that both spaces are constructed
as quotients of a Euclidean space; however, there are some modeling differences
that result in significant differences in the graph- and tree-space geometries. In
an incidence matrix M representing a graph the entry Mij is zero if there is
no edge connecting the ith and jth vertices. As a consequence, such a model
cannot describe what happens when an edge is shrinking to finally disappear,
and as discussed above, such a model is not suitable for most medical image
analysis applications. In the tree-space presented here, we use zero edge at-
tributes to represent collapsed edges. As a result, the tree-space quotient will
make identifications that are not represented by a group acting on vertices or
edges, and the tree-space presented in this article will not be an orbifold.

Tree-like structures also appear in other settings, for instance as phyloge-
netic trees describing genetics. Billera et al. [BHV01] have created a mathe-
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(a) Edge matching (b) Geodesic candidate

(c) Tree-shape representation

Figure 1.3: (a-b) A good metric must handle edge matchings which are inconsistent
with tree topology. (c) Tree-like shapes are encoded by an ordered binary tree and a
set of attributes describing edge shape.

matical framework for geodesic analysis of phylogenetic trees, and Owen and
Provan [OP11] have developed efficient algorithms for computing geodesics in
the space of phylogenetic trees.

We have previously [FLN10, FLL+10] studied geodesics between small tree-
shapes in the same type of singular shape space as studied here. In this paper
we give in-depth explanations and more extensive proof-of-concept examples
illustrating the possibilities in the QED metric.

1.3 The space of tree-like shapes

Before defining a tree-space and giving it a geometric structure, let us discuss
which properties are desirable for a tree-shape model. In order to compute av-
erage trees and analyze variation in datasets, we require, at the very least, local
existence and uniqueness properties for geodesics. As discussed in the previous
section, if we do not have (locally) unique geodesics, then we do not even have
well-defined means for datasets with two trees. When geodesics exist, we want
the topological structure of the intermediate trees to reflect the resemblance in
structure of the trees being compared – in particular, a geodesic passing through
the trivial one-vertex tree should indicate that the trees being compared are max-
imally different. Perhaps more important, we would like to compare trees where
edge matching is inconsistent with tree topology, as in fig. 1.3a; specifically, we
would like to find geodesic deformations in which the tree topology changes
when we have such edge matchings, for instance as in fig. 1.3b.

1.3.1 Representation of trees

In this paper, a ”tree-shape” is an embedded tree in R2 or R3. More precisely, a
tree-shape will consist of a series of edge embeddings, glued together as defined
by a rooted combinatorial tree. Tree-shapes are invariant to translation, but we
do not remove scale and rotation from the definition of a tree-shape.

Any tree-like (pre-)shape is represented as a pair (T , x) consisting of a
rooted, planar, binary tree T = (V,E, r) with edge attributes. Here, T de-
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scribes the tree topology, and the attributes describe edge geometry, as illus-
trated in fig. 1.3c. The attributes are represented by a point x ∈

∏
e∈E A, where

A is the attribute space. Tree-shapes which are not binary are represented by
the binary tree T in a very natural way by allowing constant, or collapsed,
edges, represented by the zero scalar or vector attribute. Endowing an internal
edge with a zero attribute corresponds to collapsing that edge, and in this way
an arbitrary attributed tree can be represented as an attributed binary tree, see
fig. 1.4b.

Representing tree-shapes by binary trees is natural for several reasons. Bi-
nary trees are stable in the sense that whenever a perturbation of a binary
tree-shape is sufficiently small, the topological structure of the tree-shape re-
mains unchanged. Conversely, a trifurcation or higher-order vertex can always
be turned into a series of bifurcations sitting close together by an arbitrarily
small perturbation. In our representation, thus, trifurcations are represented as
two bifurcations sitting infinitely close together, etc. In the case of airway trees,
which are of particular interest for us, binary tree-shape representations are in
agreement with Weibel’s dichotomous airway tree model [Wei09].

The edge attributes in A describe edge shape, and could, e.g., be edge length,
landmark points or edge parametrizations. In this work, we use open curves
translated to start at the origin, described by a fixed number of landmark points.
Thus, throughout the paper, the attribute space A is (Rd)n where d = 2 or 3 and
n is the number of landmark points per edge. Collapsed edges are represented
by a sequence of origin points.

In order to compare trees of different sizes and structures, we need to repre-
sent them in a unified way. We describe all shapes using the same binary tree
T to encode tree topology. By choosing a sufficiently large binary tree we can
represent all the trees in our dataset by filling out with collapsed edges. We call
T the maximal binary tree.

Trees embedded in the plane are given a natural edge order induced by the
left-right order on the children of any edge. Similarly, a combinatorial tree whose
edges are ordered will always have a unique, implicitly defined embedding in the
plane such that the order of siblings ascends from left to right. For this reason
we use the terms ”planar tree” and ”ordered tree” interchangingly. We initially
study metrics on the set of ordered binary trees; later we use them to compute
distances between unordered trees by considering all possible orders. This leads
to potential computational challenges, which are discussed in Section 1.5.

Fix an ordered maximal binary tree T with edges E, which encodes the
connectivity of all our trees. Any attributed tree T is now represented by a
point x = (xe)e∈E in X =

∏
e∈E(Rd)n, where the coordinate xe describes the

shape of the edge x. We call X the tree pre-shape space, since some tree-shapes
are represented by several points in X. This causes problems as some natural
tree-deformations are not represented as continuous paths in X, see fig. 1.4a.
We solve this problem by inducing a refined space, which will become the space
of tree-like shapes.

1.3.2 The singular space of ordered tree-shapes

We go from pre-shapes to shapes by identifying those pre-shapes which define
the same shape.
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(a) (b)

quotient

(c)

Figure 1.4: (a) The tree deformation shown in the top row does not correspond
to a path in X, as the two representations of the intermediate tree are found at
distinct points in X. (b) Higher-degree vertices are represented by collapsing internal
edges (dotted line = zero attribute = collapsed edge). We identify those tree pre-
shapes whose collapsed structures are identical: here x1 and x2 represent the same
tree T . (c) The simplest non-trivial tree-shape space, consisting of trees with two
branches endowed with scalar attributes. Along the x- and y-axes we find trees with
a single branch; hence, for each real number a the tree-shape found at T ′ = (a, 0) is
also represented at T = (0, a). We build the tree-shape space by gluing the different
representations of the same tree-shapes, such as the representations T and T ′, together,
obtaining the shape space shown on the right. Note also the path from T̄1 to T̄2 through
T̄ in X̄ on the right. The corresponding path in the pre-shape space X involves a
”teleportation” from the representation T to the representation T ′.

Consider two ordered tree-shapes where internal edges are collapsed, and
replace their binary representations by collapsed representations where the zero
attributed edges have been removed. The depth-first orders of the original
trees induce well-defined depth-first orders on the collapsed trees. We say that
two ordered tree-shapes are the same when their collapsed ordered topological
structures are identical, and the edge attributes on corresponding non-collapsed
edges are identical as well, as in fig. 1.4b. Thus, tree identifications come with
an inherent bijection of subsets of E: If we identify x, y ∈ X = (RN )E , de-
note E1 = {e ∈ E|xe 6= 0}, E2 = {e ∈ E|ye 6= 0}; the identification comes
with an order preserving bijection ϕ : E1 → E2 identifying those edges that
correspond to the same edge in the collapsed tree-shape. Note that ϕ will also
correspond to similar equivalences of pairs of trees with the same topology, but
other attributes.

The bijection ϕ next induces a bijection Φ: V1 → V2 given by Φ: (xe) 7→
(xϕ(e)). Here, V1 = {x ∈ X|xe = 0 if e /∈ E1} and V2 = {x ∈ X|xe = 0 if e /∈
E2} are subspaces of X where, except for at the axes, the topological tree
structure is constant, and for x ∈ V1, Φ(x) ∈ V2 describes the same shape as x.

We define a map Φ for each pair of identified tree-structures, and form
an equivalence on X by setting x ∼ Φ(x) for all x and Φ. For each x ∈ X
we denote by x̄ the equivalence class {x′ ∈ X|x′ ∼ x}. The quotient space
X̄ = (X/ ∼) = {x̄|x ∈ X} of equivalence classes x̄ is the space of tree-like
shapes.

Quotient spaces are standard constructions from topology and geometry,
where they are used to glue spaces together [BH99, chapter 1.5]. The geometric
interpretation of the identification in the tree-space quotient is that we are
folding and gluing the pre-shape space space along the identified subspaces;
i.e. when x1 ∼ x2 we glue the two points x1 and x2 together. See the simple
tree-shape space in fig. 1.4c for an intuitive illustration.
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1.3.3 Metrics on the space of ordered trees

Given a metric d on the Euclidean pre-shape-space X =
∏
e∈E RN we define

the standard quotient pseudometric [BH99] d̄ on the quotient space X̄ = X/ ∼
by setting

d̄(x̄, ȳ) = inf

{
k∑
i=1

d(xi, yi)|x1 ∈ x̄, yi ∼ xi+1, yk ∈ ȳ

}
. (1.1)

This amounts to finding the optimal path from x̄ to ȳ, consisting of any number
k of concatenated Euclidean lines, passing through k − 1 identified subspaces,
as shown in fig. 1.4c. It is clear from the definition that the distance function
d̄ is symmetric and transitive. It is, however, defined as an infimum of a set of
real numbers, giving a risk that the distance between two distinct tree-shapes
is zero, as occurs with some intuitive shape distance functions [MM04]. This is
why d is called a pseudometric. We need to prove that it actually is a metric;
i.e., that d̄(x̄, ȳ) = 0 implies x̄ = ȳ.

We define two metrics on X, which come from two different ways of com-
bining the individual edge distances: The metrics d1 and d2 on X =

∏
e∈E RN

are induced by the norms

‖x− y‖1 =
∑
e∈E
‖xe − ye‖, (1.2)

‖x− y‖2 =

√∑
e∈E
‖xe − ye‖2. (1.3)

From now on, d and d̄ will denote either the distance functions d1 and d̄1, or
d2 and d̄2. Recall that it is not yet clear that the d̄i are going to define metrics
on X̄.

We shall prove the following:

Theorem 1.4 The distance function d̄ is a metric on X̄, which is a contractible,
complete, proper geodesic space.

Proof. See Appendix 1.9. �

This means, in particular, that given any two trees, we can always find a
geodesic between them in both metrics d̄1 and d̄2.

Remark 1.5 It can be shown that for any metric d on X, the induced pseu-
dometric d̄ on X̄ is a metric.

1.3.4 From planar trees to spatial trees

The world is not two-dimensional, and for most applications it is necessary to
study embedded trees in R3. As far as attributes in terms of edge embeddings
and landmarks are concerned, this is, however, not very different from the planar
embedded trees – the main difference from the R2 case comes from the fact that
trees in R3 have no canonical edge order. The left-right order on children of
planar trees gives an implicit preference for edge matchings, and hence reduces
the number of possible matches. When we no longer have this preference, we
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generally need to consider all orderings of the same tree and choose the one
which minimizes the inter-tree distance to a certain fixed, ordered tree.

We define the space of spatial tree-like shapes as the quotient ¯̄X = X̄/G,
where G is the group of reorderings of the standard tree. The metric d̄ on X̄
induces a quotient pseudometric ¯̄d on ¯̄X.

Note that G is a finite group, which means that ¯̄X is locally well-behaved
almost everywhere. In particular, off fixed-points for the action of G on X̄,
the projection p̄ : X̄ → ¯̄X is a local isometry; hence the geometry from X̄ is
preserved off the fixed points. Geometrically, a fixed point is a tree-shape where
a reordering of certain branches does not change the tree-shape; that is, some
pair of sibling edges must have the same shape attributes. In particular, the
fixed points are non-generic because they belong to the lower-dimensional subset
of X̄ where the two (sibling) edges have identical attributes. Using standard
results on compact transformation groups along with similar techniques as for
theorem 1.4, we can prove:

Theorem 1.6 For ¯̄d induced by either d̄1 or d̄2, the function ¯̄d is a metric and
the space ( ¯̄X, ¯̄d) is a contractible, complete, proper geodesic space.

While considering all different possible orderings of the tree makes perfect
sense from the geometric point of view, in reality this becomes an impossible
task as the size of the trees grow beyond a few generations. In real applica-
tions we can, however, efficiently reduce complexity using a few tricks. These
tricks include taking tree- and tree-space geometry into account as discussed
in Section 1.5, but also inducing an order on unordered trees by aligning them
with one fixed tree. This corresponds to using the local isometry property of
the projection p̄ : X̄ → ¯̄X, which is similar to the use of horizontal geodesics
e.g. used by Huckemann et al. [HHM10].

1.3.5 Geometric interpretation of the metrics

It is easy to see from the definition that the metrics d̄1 and ¯̄d1 coincide with
the classical tree edit distance (TED) metric for ordered and unordered trees,
respectively. This shows that the mathematical construction of tree-space is not
an obstruction to finding intuitive algorithms for inter-tree distances.

The metrics d̄2 and ¯̄d2 are descents of the Euclidean metric on X̄, and
geodesics in this metric are concatenations of straight lines in flat regions. We
call them the QED metric on ordered and unordered trees, respectively, for
quotient euclidean distance.

In Section 1.4.5 we compare the two metrics using example geodesic defor-
mations.

1.4 Curvature in the space of tree-like shapes

Uniqueness of geodesics and means is closely connected to the curvature of the
dataspace, which is the topic of the current section. Using methods from metric
geometry [Gro87] we shall investigate the curvature of the tree-shape space with
the QED and TED metrics.

The next theorem states that in the tree-shape space endowed with the QED
metric, any randomly selected point has a corresponding radius within which

10



Figure 1.5: A metric space is a CAT (0) space if, for a geodesic triangle abc and for
any point x on the triangle, the distance from x to the opposite vertex is at most as
long as the corresponding distance in the planar comparison triangle āb̄c̄.

the tree-space has non-positive curvature. Later in this section we shall use this
fact to show that datasets within that same radius have unique averages.

Theorem 1.7 i) Endow X̄ with the QED metric d̄2. A generic point x̄ ∈ X̄
has a neighborhood U ⊂ X̄ in which the curvature is non-positive. At non-
generic points, the curvature of (X̄, d̄2) is unbounded.

ii) Endow X̄ with the TED metric d̄1. The metric space (X̄, d̄1) does not
have locally unique geodesics anywhere, and the curvature of (X̄, d̄1) is
everywhere unbounded.

Formally, a generic property is a property which holds on an open, dense
subset. One interpretation of this, given a probability measure compatible with
the topology, is that generic properties hold with probability one. Thus, for a
random tree-shape, we can safely assume that tree-space is locally non-positively
curved at that shape.

Similarly, by a non-generic property we mean a property whose ”not hap-
pening” is generic – i.e. a property that we need not worry about for a random
tree-shape.

In order to understand and prove theorem 1.7, we need the concept of curva-
ture in metric spaces. In spite of its simplicity and elegance, this concept from
metric geometry is novel in computer vision, and we shall spend a little time
introducing it.

1.4.1 Curvature in metric spaces

Since general metric spaces can have all kinds of anomalies, the concept of
curvature in such spaces is usually defined though a comparison with spaces
that we understand well. More precisely, the metric spaces are studied using
geodesic triangles, which are compared with corresponding comparison triangles
in model spaces with a fixed curvature κ. The model spaces are spheres (κ > 0),
the plane R2 (κ = 0) and hyperbolic spaces (κ < 0), and through comparison
with these spaces, we can bound the curvature of the metric space by κ. In
this paper we shall use comparison with planar triangles, which will give us
curvatures bounded from above by 0.

Given a geodesic metric space X, a geodesic triangle in X consists of three
points a, b, c and geodesic segments joining them. A planar comparison triangle
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Figure 1.6: Two intersecting planes form a CAT (0) space.

for the triangle abc consists of three points ā, b̄, c̄ in the plane, such that the
lengths of the sides in āb̄c̄ are the same as the lengths of the sides in abc.

A CAT (0) space is a metric space in which geodesic triangles are ”thinner”
than for their comparison triangles in the plane; that is, d(x, a) ≤ d(x̄, ā). for
any x on the edge bc where x̄ is the unique point on the edge b̄c̄ such that
d(b, x) = d̄(b̄, x̄) and d(x, c) = d̄(x̄, c̄). If the planar comparison triangle is
replaced by a comparison triangle in the sphere or hyperbolic space of curvature
κ, a CAT (κ) space is obtained.

A space is said to have non-positive curvature if it is locally CAT (0), i.e. if
any point in the space has a radius such that the portion of the space within
the radius is CAT (0). Similarly define curvature bounded by κ as being locally
CAT (κ).

Example 1.8 � The space obtained from intersecting Euclidean spaces as
in fig. 1.6 is a CAT (0) space.

� The GPCA construction by Vidal et al. [VMS05] defines a CAT (0) space,
giving another potential use of CAT (0) spaces and metric geometry in
machine learning.

� The space of phylogenetic trees is a CAT (0) space [BHV01].

� As we are about to see, the space of tree-like shapes is locally a CAT (0)
spaces almost everywhere.

One of the main reasons why CAT (κ), and CAT (0) in particular, is an
attractive property is due to the following result on existence and uniqueness of
geodesics.

Proposition 1.9 [BH99, proposition II 1.4] Let (X, d) be a CAT (κ) space. If
κ ≤ 0, then all pairs of points have a unique geodesic joining them. For κ > 0,
the same holds for pairs of points at a distance less than π/

√
κ.

A more thorough description of the theory of metric geometry can be found
in the book by Bridson and Haefliger [BH99].

1.4.2 Curvature in the space of ordered tree-shapes – proof
of theorem 1.7

In this section we study the curvature of the shape space using the theory of
CAT (κ) spaces. We shall show that in a generic set of trees, the shape space
will have bounded curvature.
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Theorem 1.10 At a generic point x̄ ∈ X̄, the shape space is locally CAT (0),
and thus it has locally unique geodesics in a neighborhood of x̄.

Proof. Define a subspace W̄ of X̄ which is the image under p : X → X̄ of the
set W = {x ∈ X|prV (x) = 0 for identified subspaces V }. It is enough to show
that the subset of shape space given by X̄ \ W̄ is locally CAT (0).

Pick a point x̄ ∈ X̄ \ W̄ . We show that X̄ \ W̄ is locally CAT (0) at x̄. Form
a second space Ȳ by taking, for each identified subspace V with x̄ ∩ V 6= ∅, a
copy X ′ of X with a designated subspace V ′ isomorphic to V , and glue together
the X ′ along the V ′ as illustrated in fig. 1.6. Give Ȳ the quotient pseudometric;
this is a metric by using [BH99, Chapter I lemma 5.28] repeatedly, and Ȳ is
a CAT (0)-space, as can be shown by using [BH99, Chapter II theorem 11.3]
several times.

Pick Rx̄ > r > 0 such that BX̄(x̄, r) ∩ W̄ = ∅. Now BX̄(x̄, r) and BȲ (0, r)
are isomorphic, so in particular, BX̄(x̄, r) is a CAT (0)-space. But this proves
the first claim.

The second claim, regarding local uniqueness of geodesics, now follows from
proposition 1.9. �

Based on this, we are now ready to prove theorem 1.7:

Proof (Proof of theorem 1.7). i) The QED case: Since X̄ is locally CAT (0)
at generic points x̄, the curvature of X̄ is non-positive in a neighborhood
U of x̄. At points x̄ ∈ W̄ , however, we will always find pairs of points
ā1, ā2 arbitrarily close to x with two geodesics joining them, just as in
fig. 1.4c.

ii) The TED case: Consider a tree-shape T̃ ∈ X̄, represented by a point
x ∈ X. Induce a second tree-shape T̃ ′ represented by x + y1 + y2 ∈
X, where y1, y2 ∈

∏
e∈E(Rd)n such that y1 and y2 have one non-zero

coordinate, found in different edges, which are both nonzero edges in x.
Now, the topology of T̃ ′ is the same as of T̃ . For any n ∈ N, we can find
n TED geodesics g1, . . . , gn from T̃ to T̃ ′, where gi can be decomposed as
x 7→ x+(i/n)y1 7→ x+(i/n)y1 +y2 7→ x+y1 +y2. It follows that there are
infinitely many TED geodesics from T̃ to T̃ ′. Thus, (X̄, d̄1) does not have
locally unique geodesics anywhere, and as a consequence its curvature is
unbounded everywhere [BH99, proposition II 1.4]. �

The practical meaning of theorem 1.7 is that i) we can use techniques from
metric geometry to search for QED averages, ii) as we are about to see, for
datasets which are sufficiently dense, there exist unique means, centroids and
circumcenters for the QED metric, and iii) we cannot use the same techniques
in order to prove existence or uniqueness of centerpoints for the TED metric; in
fact, any geometric method which requires bounded curvature [Kar77, BH99,
BHV01] is going to fail for the TED metric. This result motivates our study of
the QED metric.

1.4.3 Curvature in the space of unordered tree-shapes

It is easy to prove that the same results also hold for unordered tree-shapes:
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Theorem 1.11 The space ¯̄X of unordered trees with the QED metric ( ¯̄X, ¯̄d2)
is non-positively curved. As a consequence, geodesics are locally unique and
means, circumcenters and centroids all exist and are unique locally. On the
other hand, with the TED metric, ( ¯̄X, ¯̄d2) has everywhere unbounded curvature,
geodesics are not locally unique and the same holds for all the types of average
tree discussed in this article.

1.4.4 Means and related statistics in the space of tree-like
shapes

In this section we use what we learned in the previous section to show that, given
the QED metric on the space of tree-like shapes, we can find various forms of
average shape in the space of ordered tree-like shapes assuming that the data
is sufficiently dense.

There are many competing ways of defining central elements given a subset
of a metric space. Here discuss several; namely the circumcenter considered in
[BH99], the centroid considered, among other places, in [BHV01], and the mean
[Kar77].

One way to attack the problems of existence and uniqueness of averages is
by using convex functions. Convex functions have minimizers, which are unique
for strictly convex functions – hence we can prove existence and uniqueness of
averages by expressing them as minimizers of strictly convex functions.

Recall that a function f : [a, b] → R is convex if f((1 − s)t + st′) ≤ (1 −
s)f(t) + sf(t′) for all s ∈ [0, 1] and t, t′ ∈ [a, b]. If we can replace ≤ with <
whenever s ∈]0, 1[, then f is strictly convex, and has a unique minimizer.

We generalize the concepts to geodesic spaces by saying that ifX is a geodesic
space then a map f : X → R is (strictly) convex if for any two points a, b ∈ X
and any geodesic γ : [0, l]→ X from a to b, the function f ◦γ is (strictly) convex.

We shall make use of the following standard properties of convex functions:

Lemma 1.12 i) If f : R→ R and g : R→ R are both convex, g is monotonous
and increasing, and g is strictly convex, then g ◦ f is strictly convex.

ii) If f : R → R and g : R → R are both convex, then g + f : R → R is also
convex. If either f or g is strictly convex, then g + f is strictly convex as
well.

The mean of a finite subset {x1, . . . xs} in a metric space (X, d) is defined as

argmin

s∑
i=1

d(x, xs)
2, (1.13)

also referred to as the Frechet mean. Local minimizers of (1.13) are called
Karcher means.

Theorem 1.14 i) If X is a CAT (0)-space, then the map f : X → R, f(x) =
d(x, z) is convex for any fixed z ∈ X.

ii) Means exist and are unique in CAT (0)-spaces.
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Proof. i) Suppose that x, y ∈ X and let γ : [0, l]→ X be the unique geodesic
from x to y. Form a geodesic triangle with corners at x, y and z; now the
edge connecting x and y is parametrized by γ. Form a comparison triangle
in the plane with corners x′, y′ and z′. We have

f(γ(t)) = f(γ((1− t) · 0 + t · 1))
= d(γ(t), z)
≤ d((1− t)x′ + ty′, z′)
≤ (1− t)d(x′, z′) + td(y′, z′)
= (1− t)d(x, z) + td(y, z)
= (1− t)f(x) + tf(y),

where the third inequality comes from the fact that if γ(t) = w then

d(w′, z′) ≤ min{d(x′, z′), d(y′, z′)}
≤ (1− t)d(x′, z′) + td(y′, z′).

ii) Now the function dy : X → R given by dy(x) = d(x, y) is convex for any
fixed y ∈ X by i), and so the function d2

y is strictly convex by lemma 1.12
i). But then D =

∑s
i=1 d

2
xi

is strictly convex by lemma 1.12 ii), and the
mean is just a minimizer of the strictly convex function D, so it exists and
is unique. �

We are also going to consider two other types of statistical ”prototype” for
a dataset, namely circumcenters and centroids. These are both well-known in
the context of metric geometry and CAT (κ) spaces.

Definition 1.15 a) Circumcenters Consider a metric space (X, d) and a
subset Y ⊂ X with radius rY . A point c ∈ X is a circumcenter for Y
if Y ⊂ B̄(cY , rY ), that is, Y is contained in the closed ball of radius rY
centered at cY .

b) The centroid of a finite set Suppose that X is a uniquely geodesic
metric space. The centroid of a set S ⊂ X of n elements is defined
inductively as a function of the centroids of subsets with n − 1 elements
in the following way:

Suppose |S| = 2, and denote the elements of S by s1 and s2. The centroid
c(S) of S is the midpoint of the geodesic joining s1 and s2.

Now suppose |S| = n, and denote the elements of S by s1, s2, . . . , sn.
Define c1(S) = {c(S′) : |S′| = n − 1}, which is a set with n elements,
and similarly, for larger k, ck(S) = c1(ck−1(S)). All these sets have n
elements.

Now if the elements of ck(S) converge to a point c ∈ X as k → ∞, then
we say that c = c(S) is the centroid of S in X.

Based on previous results for CAT (κ) spaces, as well, as our results for mean
trees, we have for the set of tree-like shapes:

Theorem 1.16 Endow X̄ with the QED metric d̄2. Given a generic point
x̄ ∈ X̄, there exists a radius rx̄ such that sets contained in the ball B(x̄, rx̄) have
unique means, centroids and circumcenters.
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The same statistical properties also hold for the QED metric on unordered
tree-shapes:

At generic points, the space of unordered tree-shapes with the QED metric
( ¯̄X, ¯̄d2) has local existence and uniqueness of means, circumcenters and cen-
troids. For the TED metric, these are not unique

Proof. Let us start by considering X̄ and ¯̄X with the QED metric. By The-
orems 1.7 and 1.11, X̄ and ¯̄X are both locally CAT (0) spaces, and by Theo-
rems 1.4 and 1.6 they are both complete metric spaces.

We have just seen that means exist and are unique in CAT (0) spaces, so the
statement holds for means.

By [BH99, proposition 2.7], any subset Y of a complete CAT (κ) space of ra-
dius rY < Dκ/2 has a unique circumcenter, where Dκ =∞ whenever κ ≤ 0, and
Dκ = π/

√
(κ) whenever κ > 0. Hence, the statement holds for circumcenters.

Similarly, by [BHV01, theorem 4.1], finite subsets of CAT (0) spaces X have
centroids, which are unique by definition, and the statement also holds for cen-
troids.

Now, let us turn to the TED metric. By definition, for any 2-point dataset,
all these definitions of midpoint reduce to finding the midpoint of a geodesic
connecting the two points. As we have already seen, geodesics and midpoints
are far from unique in the TED metric, which ends the proof. �

1.4.5 Comparison of QED and TED

In this section we discuss the main differences between the TED and QED
metrics and compare their performance on the small trees studied in [FLN10].

Geometry

As shown in theorem 1.4 and theorem 1.6 above, both X̄ and ¯̄X are complete
geodesic spaces with both the TED and QED metrics. However, by theorem 1.7,
the QED metric gives locally non-positive curvature at generic points, while
the TED metric gives unbounded curvature everywhere on X̄. Equivalently,
geodesics are locally unique almost everywhere in the QED metric, while being
nowhere locally unique in the TED metric. As emphasized by theorem 1.16,
this means that we cannot imitate the classical statistical procedures on shape
spaces using the TED metric, while for the QED metric, we can.

Note, moreover, that the QED metric is the quotient metric induced from
the Euclidean metric on the pre-shape space X, making it the natural choice of
metric seen from the shape space point of view.

Computation

The TED metric has nice local-to-global properties, as illustrated in fig. 1.7a. If
the trees T1 and T2 are decomposed into subtrees T1,1, T1,2 and T1,2, T2,2 as in
fig. 1.7a such that the geodesic from T1 to T2 restricts to geodesics between T1,1

and T2,1 as well as T1,2 and T2,2, then d(T1, T2) = d(T1,1, T2,1) + d(T1,2, T2,2).
This property is used in many TED algorithms, and the same property does
not hold for the QED metric, due to the square root involved.
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(a) (b)

(c)

Figure 1.7: (a) Local-to-global properties of TED: d̄1(T1, T2) = d̄1(T1,1, T2,1) +
d̄1(T1,2, T2,2). (b) Generic geodesic deformations: geodesic 1 goes through tree with a
trifurcation, while geodesic 2 does not go through internal structural transitions. (c)
Two options for structural transition.

Performance

To compare the performance of TED and QED metrics on small, simple trees,
consider the two tree-paths in fig. 1.7c, where the edges are endowed with non-
negative scalar attributes a, b, c, d, e describing edge length. Path 1 indicates a
matching of the identically attributed edges c and d, while Path 2 does not make
the match. Now, the cost of Path 1 is 2e in both metrics, while the cost of Path
2 is 2

√
c2 + d2 in the QED metric and 2(c+d) in the TED metric. In particular,

TED will chose to identify the c and d edges whenever e2 ≤ c2 + 2cd+ d2, while
QED makes the match whenever e2 ≤ ½(c2 + d2). That is, TED will be more
prone to the internal structural change than QED. This is also seen empirically
in the comparison of TED and QED matching in fig. 1.9. Note that although the
TED is more prone to matching trees with different tree-topological structures,
the matching results are similar, as is also expected since the metrics are quite
similar.

1.5 Computation and complexity

Complexity is a problem with computing both TED and QED distances, in
particular for 3D trees, which do not have a canonical planar order. Here we
discuss how to use geometry and anatomy to find approximations of the metric
whose complexity is significantly reduced.

1.5.1 Ordered trees: Reducing complexity using geometry

The definition of d̄ in (1.1) opens for considering infinitely many possible paths.
However, we can significantly limit the search for a geodesic by taking the
geometry of tree-space into account.

Theorem 1.17 i) Tree-shapes that are truly binary (i.e. their internal edges
are not collapsed) are generic in the space of all tree-like shapes.
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ii) For generic pairs of trees, the geodesic tree-shape deformations pass through
trees which have only bifurcations or trifurcations. Tht is, locally, the
geodeics are of the forms shown in in fig. 1.7b.

Proof. i) Let T̃ be a tree-shape in X̄ or ¯̄X which is not truly binary, which
is represented by a binary tree T . By adding arbitrarily small noise to
the zero attributes on edges of T , we obtain truly binary tree-shapes T̃ ′

which are arbitrarily close to T̃ . Moreover, the set of full truly binary
tree-shapes in X̄ or ¯̄X is open and dense. Hence, truly binary tree-shapes
are generic both in X̄ and in ¯̄X.

ii) Suppose given a pair of trees whose geodesic passes through a tree with a
vertex of order 4 or higher. There exists an arbitrarily small deformation
of either one of the two endpoint trees which will split the higher order
vertex into a series of bifurcations and trifurcations. On the other hand,
suppose given a pair of trees whose geodesic only passes through trees with
bifurcations and trifurcations. An arbitrarily small deformations of either
endpoint will not change the topological structure of the intermediate
trees. Thus, intermediate trees in geodesics connecting generic pairs of
tree-shapes will only have bifurcations and trifurcations. �

The essense of the theorem is, that binary tree-shapes are generic, but that
does not mean that non-binary trees do not need to be considered! While non-
binary trees do not appear as randomly selected trees, they do appear in paths
between randomly selected pairs of trees, as in fig. 1.7b. This means that we can
work on a less complicated semi-pre-shape-space where we, instead of identifying
all possible representations of the same shape, restrict ourselves to making the
identifications illustrated by fig. 1.7b.

This is similar to the generic form of shock graphs and generic transitions
between shock graphs found by Giblin and Kimia [GK03]. The notions of gener-
icity in the two settings are, however, different since in [GK03], genericity is
defined with respect to the Whitney topology on the space of the corresponding
shape boundary parametrizations.

Although we do run into non-binary tree-like shapes in real-life applications,
for instance when studying airway trees, this can be interpreted as an artifact
of resolution rather than as true higher-degree vertices. For instance, airway
extraction algorithms record trifurcations when the relative distances are below
certain treshold values.

Finally, we often study trees with a somewhat pre-defined overall structure,
Thus, it is often safe to assume that the number of internal structural transi-
tions found in a geodesic deformation is low. For the airway trees studied in
Section 1.7.2, we find empirically that it is enough to allow for one structural
change in each lobar subtree.

Using these arguments, it becomes feasible to computationally handle anatom-
ical structures such as airway trees. In many anatomical applications, such as
airways or blood vessels, we are not interested in studying tree-deformations
between very large networks or trees, since beyond a certain point, the tree-
structure stops following a predetermined pattern and becomes a stochastic
variable, where a geodesic analysis does not necessarily make sense.
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1.5.2 Unordered trees: Reducing complexity using geometry-
or anatomy-based semi-labeling schemes.

It is well known that the general problem of computing TED-distances between
unordered trees is NP-complete [ZSS92], and the QED metric is probably gen-
erally not less expensive to compute, as indicated also by theorem 1.6. Here we
discuss how to use geometry and anatomy to find approximations of the metric
whose complexity is significantly reduced.

In particular, trees appearing in applications are usually not completely un-
ordered, but are often semi-labeled. Semi-labelings can come from geometric or
anatomical properties as in the pulmonary airway trees studied in Example 1.18
below, or may be obtained by a coarser registration method. (Semi-)labelings
can also come from a TED distance computation or approximation, which is
a reasonable way to detect approximate structural changes since the TED and
QED give similar matchings, as seen in fig. 1.9.

Example 1.18 (Semi-labeling of the upper airway tree) In fig. 1.9c, we
see a ”standard” airway tree with branch labels (or at least the first generations
of it). Most airway trees have similar, but not necessarily identical, topological
structure to this one, and several branches, especially of low generation, have
names and can be identified by experts.

The top generations of the airway tree, shown in red, serve very clear pur-
poses in terms of anatomy. The root edge is the trachea; the second generation
edges are the left and right bronchi; and the third generation edges lead to
the lung lobes. As these are easily identified, we find a semi-labeling of the
airway tree, which is used to simplify the computational complexity for airway
distances in Section 1.7.2.

1.6 QED approximation

We explain a simple implementation of the QED metric. As shown in the next
section, our experimental results are promising.

Alignment of trees and edges.

We translate all edges to start at 0. We do not factor out scale in the tree-
space, because in general, we consider scale an important feature of shape.
Edge scale in particular is a critical property, as the dynamics of appearing and
disappearing edges is directly tied to edge size.

Edge shape comparison.

We represent each edge in a tree by a fixed number of landmark points – in
our case 6 – evenly distributed along the edge, the first one at the origin (and
hence neglected). The distance between two edge attributes v1, v2 ∈ (Rd)5 is
defined as the Euclidean distance between them. Although simple, this distance
measure does take the scale of edges into account to some degree since the edge
starting points are aligned.
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(a) Topological illustration. (b) Tree-shape illustration.

Figure 1.8: Tree-space paths with three different options for structural changes in the
left hand side of the depth 3 tree.

(a) Matching in the QED met-
ric.

(b) Matching in the TED met-
ric.

(c)

Figure 1.9: (a-b) Given a set of five data trees, we match each to the four others in
both metrics. (c) Standard airway tree structure with branch labels.

Implementation.

We implement the metric for ordered depth 3 trees using Algorithm 1, where the
number of internal topological transitions taking place throughout the geodesic
deformations is limited to either 1 or 2. This leaves us with the options for
structural changes illustrated in figs. 1.8a and 1.8b, applied to the left and right
half tree. With respect to the definition of the metric in equation 1.1, this
corresponds to bounding the number k, giving:

d̄(x̄, ȳ) = inf
k≤K

{
k∑
i=1

d(xi, yi)|x1 ∈ x̄, yi ∼ xi+1, yk ∈ ȳ

}
, (1.19)

where we have used K = 2 or 3. Geometrically, K is the number of Euclidean
segments concatenated to form the geodesic, which equals 1 + the number of
internal topological transitions made throughout the geodesic.

The complexity of Algorithm 1 is O(nK−1 ·C(n,K)), where n is the number
of internal vertices, K is the bound on k and C(n,K) is the maximal complexity
of the optimization in line 8. For the unordered airway trees in section 1.7.2, we
combine Algorithm 1 with a complete search through the set of branch orderings.
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Algorithm 1 Computing QED approximations between ordered, rooted trees with
up to k = K − 1 structural transitions

1: x, y planar rooted depth n binary trees
2: S = {S} set of ordered identified pairs S = {S1, S2} of subspaces of X

corresponding to internal topological changes, corresponding to a subspace
S of X̄, s.t. if {S1, S2} ∈ S, then also {S2, S1} ∈ S.

3: for S̃ = {S1, . . . , Ss} ⊂ S with |S̃| ≤ k do
4: for pi ∈ Si with representatives pi1 ∈i S1 and pi2 ∈ Si2 do
5: p = (p1, p2, . . . , ps)

6: f(p) = min{d2(x, p1) +
∑s−1
j=1 ds(p

2
i , p

i
i+1) + d2(ps, y)}

7: end for

8: dS̃ = min

{
f(p)

p = (p1, . . . , ps), pi ∈ Si,
S̃ = {S1, . . . , Ss}

}
9: pS̃ = {pi1, pi2}si=1 = argminf(p)

10: end for
11: d = min{dS |S̃ ⊂ S, |S̃| ≤ k}
12: p = {p1, p2}si=1 = {pS̃ |dS̃ = d}
13: geodesic = g = {x→ p1

1 ∼ p1
2 → p2

1 ∼ p2
2 → . . .→ ps1 ∼ ps2 → y}

14: return d, g

1.7 Experimental results

The QED metric is new, whereas the matching properties of the TED metric
are well known [SKK04]. In this section we present experimental results on real
and synthetic data which illustrate the geometric properties of the QED metric.
The experiments on airway trees in Section 1.7.2 show, in particular, that it is
feasible to compute the metric distances between real, 3D data trees.

1.7.1 Synthetic planar trees of depth 3

In order to illustrate the geometrically inutitive behaviour of the geodesic de-
formations, and their ability to handle internal topological differences, we have
uploaded movies illustrating geodesics between planar depth 3 trees, as well as
a matching table for a set of planar depth 3 trees, to the webpage

http://image.diku.dk/aasa/tree shape/planar.html.

Moreover, we have computed some simple mean and centroid trees, shown
in fig. 1.10a.

1.7.2 Results in 3D: Pulmonary airway trees

We also compute QED distances between subtrees of pulmonary airway trees.
The airway trees were first segmented from low dose screening computed to-
mography (CT) scans of the chest using a voxel classification based airway tree
segmentation algorithm by Lo et al. [LSA+10]. The centerlines were extracted
from the segmented airway trees using a modified fast marching algorithm based
on [SLC+02]. The method gives a tree structure directly through connectivity
of parent and children branches. Leaves with a volume less than 11 mm3 were
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(a) (b) (c)

Figure 1.10: (a) Top: A small set of synthetic planar trees. Bottom left: The
mean tree. Bottom right: The centroid tree.(b) The separation of the three
patients is clearly visible. (c) Although the classes overlap, there is a clear
tendency to separation between healthy smokers and COPD patients.

assumed to be noise and pruned away, and the centerlines were sampled with 6
landmark points on each edge.

First experiment: Separation of different patients

Six airway trees extracted from CT scans taken from three different patients
at two different times were analyzed, restricted to the first six generations of
the airway tree. The first three generations were identified and labeled as in
Ex. 1.18, leaving us with topological variation in four lobar depth 3 subtrees
representing the 4th to 6th airway tree generations. Algorithm 1 was run with
both K = 2 and K = 3, giving the same results for all trees. Thus, we find it
perfectly acceptable to restrict our search to paths with low values of K.

Based on the inter-airway tree distances we made the 2-dimensional multi-
dimensional scaling plot shown in fig. 1.10b, which clearly shows a separation
of the three different patients.

Second experiment: Tree-shape and disease

It is well-known that there is correlation between geometric airway measures
such as airway wall thickness and COPD [WDE+09], and in a recent study
such measures are successfully combined with global anatomical knowledge of
the airway geometry [SLD+11]. We perform a different experiment to investi-
gate correlation between COPD and the airway tree-shape based only on QED
distance, i.e. without incorporating the airway wall thickness.

We compute coarse approximate distances (with K = 2) between 30 airway
trees, 15 from healthy male smokers and 15 from male smokers with moderate
COPD and no emphysema. Based on the resulting distances, we obtain the
multidimensional scaling plot found in fig. 1.10c, which shows a clear tendency
in the data even though the two classes seem to overlap.

1.8 Conclusions and future work

Starting from a purely geometric point of view, we define a shape space for
tree-like shapes. The intuitive geometric framework allows us to simultaneously
take both global tree-topological structure and local edgewise geometry into
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account. We define two metrics on this shape space, QED and TED, which give
the shape space a geodesic structure (theorems 1.4 and 1.6).

QED is a geometrically natural metric, which turns out to have geometric
properties which are essential for statistical shape analysis. In particular, the
QED metric has local uniqueness of geodesics and local existence and uniqueness
for three versions of average shape, namely the mean, the circumcentre and
the centroid (theorem 1.16). TED does not share these properties, but has
somewhat better computational properties.

Both metrics are generally NP hard to compute for 3D trees. We explain
how semi-labeling schemes and geometry can be used to overcome the complex-
ity problems, and illustrate this by computing QED distances between trees
extracted from pulmonary airway trees as well as synthetic planar data trees.

Our future research will be centered around two points: Development of
nonlinear statistical methods for the singular tree-shape spaces, and finding
fast approximations and heuristics for the QED metric. The latter will pave
the road for computing averages and modes of variation for large, real 3D data
trees – which is by no means trivial, due to the complexity of computing exact
distances.

1.9 Appendix: Proof of theorem 1.4

1.9.1 Precise shape space definition

The general idea of the construction of the tree-shape space is illustrated in the
section preceding theorem 1.4. However, in order to write out the technicalities
of the proof, we need to be a little more specific about how the identifications
are taking place:

For each combinatorial type of tree-shape Cj (j = 1, . . . ,K) which can be
represented using T , there is a family Eij of subsets of E, which satisfy

a) ]E1
j = Eij for all i = 1, . . . , nj , j = 1, . . . ,K.

b) there is a depth-first order on each Eij induced by the depth-first order

on E, such that the ordered, combinatorial structure defined by any Eij
coincides with that defined by E1

j .

The subset Eij for any i lists the set of edges in T which have nonzero

attributes for the ith representation of any shape of type Cj . Corresponding to
each Eij is the linear subspace Zij of X given by

Zij = {(ae) ∈
∏
e∈E

(Rd)n|ae = 0 if e /∈ Eij}

and by condition b) we can define isometries φij : Zij →
∏
e∈E1

j
A by forgetting

the zero entries in Zij and keeping the depth-first coordinate order. We generate

the equivalence ∼ on X by asking that z ∼ w whenever φij(z) = φlj(w) for
some i, j, l. We now define the space of ordered tree-like shapes as the quotient
X̄ = X/ ∼, and define the quotient map p : X → X̄.
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1.9.2 The pseudometric is a metric

To make the proof as clear and readable as possible, it has been split into several
propositions and lemmas below, and is summarized after all the smaller results
have been proven.

Proposition 1.20 The pseudometric d̄ is a metric on X̄.

Proof. Since d̄1 and d̄2 are pseudometrics, which is easily seen from the defi-
nition, it suffices to show that d̄i(x̄, ȳ) = 0 implies x̄ = ȳ. Moreover, it is also
easy to show that d1(x̄, ȳ) ≥ d2(x̄, ȳ) for any x̄, ȳ ∈ X̄, so it suffices to show that
d̄2(x̄, ȳ) = 0 implies x̄ = ȳ.

Hence, from now on, write d̄ for d̄2, and assume that d̄(x̄, ȳ) = 0.
Choose ε > 0 such that

ε� min


‖xe‖ > 0,
‖ye‖ > 0,

‖xe − xẽ‖ > 0,
‖ye − eẽ‖ > 0,

x = (xe) ∈ x̄,
y = (ye) ∈ ȳ

 . (1.21)

We may assume that x, y ∈
⋃
i,j Z

i
j since otherwise we may assume by sym-

metry that x̄ = {x} and d̄(x̄, ȳ) ≥ min{d(x, ȳ), d(x,
⋃
i,j Z

i
j)} > 0.

Denote by X̄j the image of Zij under the quotient projection p : X → X̄ for
any i.

We may assume that there exists i, j such that

x̄ ∩ Zij 6= ∅ 6= ȳ ∩ Zij (1.22)

since otherwise,

ȳ ∩
(⋃
{Zij |x̄ ∩ Z

j
i 6= ∅}

)
= ∅.

Now, in that case, ȳ is a finite set, and
⋃
{Zij |x̄ ∩ Zij 6= ∅} is a closed set, so

d
(
ȳ,
⋃
{Zij |x̄ ∩ Zij 6= ∅}

)
> 0.

The path will have to go through some Z ĩ
j̃

which does not contain points equiv-

alent to y, and

d
(
ȳ,
⋃
{Zij |ȳ ∩ Zij = ∅}

)
> ε,

because in order to reach
⋃
{Zij |ȳ ∩ Zij = ∅} we need to remove some edge

attributes which are nonzero in ȳ, and ε� ‖ye‖ for all ye 6= 0.
But if the ”path points” stay in X̄j , then the path consists of shifting and

changing the nonzero edge attributes of the trees in question, and the only
way that that will give a sum < ε is if the trees are identical and the path is
constant. �

1.9.3 Topology of the space of tree-like shapes

In this section we prove the following proposition, which is part of theorem 1.4:

Proposition 1.23 The tree-shape space (X̄, d̄) is a complete proper geodesic
space, and X̄ is contractible.
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Before turning to the proof, we note that although X̄ is no longer a vector
space like X, there is a well-defined notion of size for elements of X̄, stemming
from the norm on X:

Lemma 1.24 Note that if x ∼ y, we must have ‖x‖ = ‖y‖; hence we can define
‖x̄‖ := ‖x‖.

Proof. The equivalence is generated recursively from the conditions x ∼ y
whenever either x = y, indicating ‖x‖ = ‖y‖; or φij(x) = φik(y), indicating

‖x‖ = ‖φij(x)‖ = ‖φik(y)‖ = ‖y‖ since the φ are isometries. Hence, the lemma
holds by recursion. �

We now turn to the proof of proposition 1.23.

Proof. We shall prove that (X̄, d̄) is a proper geodesic space using the Hopf-
Rinow theorem for metric spaces:

Theorem 1.25 [BH99, Chapter I, proposition 3.7] Every complete locally com-
pact length space is a proper geodesic space.

A length space is a metric space in which the distance between two points
can always be realized as the infimum of lengths of paths joining the two points.
Note that this is a weaker property than being a geodesic space, as the geodesic
joining two points does not have to exist; it is enough to have paths that are
arbitrarily close to being a geodesic. It follows from [BH99, Chapter I lemma
5.20] that (X̄, d̄) is a length space for any metric d on X.

To see that the tree-shape space is locally compact, note that the projection
p : X → X̄ is finite-to-one, so any open subset U of X̄ has as preimage a
finite union ∪Ni=1Ui of open subsets of X, such that diam(Ui) = diam(U) and
p(∪iŪi) = Ū is compact whenever U is bounded.

We also need to prove that (X̄, d̄) is complete:

Proposition 1.26 Let d̄ denote either of the metrics d̄1 and d̄2. The shape
space (X̄, d̄) is complete.

In the proof of proposition 1.26 as well as later completeness proofs we shall
use the following lemma from general topology:

Lemma 1.27 [Dug66, Chapter XIV, theorem 2.3] Let (X, d) be a metric space
and assume that the metric d has the following property:

There exists ε > 0 such that for all y ∈ Y the closed ball B̄(y, ε) is compact.
Then d̄ is complete.

Lemma 1.28 Bounded closed subets of X̄ are compact.

Proof. By assumption X contains the origin 0 in
∏
e∈E B; hence, any closed,

bounded subspace C in X̄ is contained in the ball B̄d̄(0̄, R) in X̄ for some
R > 0, where 0̄ is the image p(0) ∈ X̄. Now, since ‖x‖ = ‖x̄‖, it follows that
p−1(B̄d̄(0̄, R)) = B̄d(0, R), which is closed and bounded. Now, since closed,
bounded subsets of A are compact, also closed, bounded subsets of X =

∏
e∈E A

must be compact, so B̄d(0, R) is compact, and by continuity of p, B̄d̄(0̄, R)) is
compact. But then C is compact also. �
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But then it is very easy to prove proposition 1.26:

Proof (Proof of theorem 1.26). By lemma 1.28, all closed and bounded sub-
sets of X̄ are compact, but then by lemma 1.27 the metric d̄ must be complete.�

Use the Hopf-Rinow theorem as stated in theorem 1.25 we thus prove that
(X̄, d̄) is a complete, proper geodesic space. The contractibility follows from the
following lemma:

Lemma 1.29 Let B be a normed vector space and let ∼ be an equivalence on B
such that a ∼ b implies t ·a ∼ t · b for all t ∈ R. Then B̄ = B/ ∼ is contractible.

Proof. Define a map H : B̄ × [0, 1] → B̄ by setting H(x̄, t) = t · x̄. Now H is
well defined because of the condition on ∼, and H(x̄, 0) = 0 ∀ x̄ ∈ B̄ so H is a
homotopy from idB̄ to the constant zero map. �

With this, we conclude the proof of proposition 1.23. �

Combining the theorems of Section 1.3.3 together, we see that the proof of
theorem 1.4 is complete.
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Chapter 2

Computing averages in
spaces of tree-like shapes

The mean is often the most important statistic of a dataset as it provides a single
point that summarizes the entire set. While the mean is readily defined and
computed in Euclidean spaces, no commonly accepted solutions are currently
available in more complicated spaces, such as spaces of tree-structured data. In
this paper we study the notion of means, both generally in Gromov’s CAT (0)-
spaces (metric spaces of non-positive curvature), but also specifically in the
space of tree-like shapes. We prove local existence and uniqueness of means in
such spaces and discuss three different algorithms for computing means.

We make an experimental evaluation of the three algorithms through experi-
ments on three different sets of data with tree-like structure: a synthetic dataset,
a leaf morphology dataset from images, and a set of human airway subtrees
from medical CT scans. This experimental study provides great insight into
the behavior of the different methods and how they relate to each other. More
importantly, it also provides mathematically well-founded, tractable and robust
“average trees”. This statistic is of utmost importance due to the ever-presence
of tree-like structures in human anatomy, e.g., airways and vascularization sys-
tems.

2.1 Notions of means

Centroids, weighted averages, midpoints of a pair of points, and other variations
on the sample mean are the basic building blocks of statistical computations.
While they are simple to compute when the underlying sample space is Eu-
clidean, they may become much more complex in non-linear sample spaces. A
classical definition of centroids in Euclidean space, dating back to Appolonios
of Perga, has a direct extension to general metric spaces [Kar77, JO10]: a mean
of the finite collection (xi)i of points in a metric space (X, d) is a minimizer of
the function

Φ(x) =

n∑
i=1

d(x, xi)
2. (2.1)
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2-point dataset A TED means of A

an infinite 
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+

Figure 2.1: The infinite family of trees on the right are TED means for the set
of two trees on the left.

A local minimizer of Φ is called a Karcher mean while a global is called a Fréchet
mean. But when does such a minimizer exist? When is it unique? Although the
above definition does not require existence of geodesics, this is often needed in
order to compute a minimizer. This reveals important problems already in the
simplest of situations. If geodesics exist in X, a solution to the above problem
for a set of two points a and b is the point c on the geodesic segment from a to b
such that d(a, c) = d(b, c). But what if there is more than one geodesic segment
between a and b? The midpoint of each geodesic segment will minimize eq. 2.1.

A key example where this problem occurs is the (Tree) Edit Distance (de-
noted TED in the sequel) used in spaces of attributed graphs and trees, e.g.,
shock graphs [KTSK00, FVS+10, TK10]. This metric is problematic as even
locally, geodesics (edit paths) are not unique, and this prevents the existence of
well-defined means even in a local context. For the pair of trees on the left in
fig. 2.1 there is an infinite family of geodesics (and hence means) generated by
varying the order and amount by which the side branches are shrunk and grown
while deforming one tree into the other. A common approach for choosing a
typical representative using TED is to choose the simplest possible mean, in this
case the one shown in the middle. When iteratively computing means, however,
one risks ending up with mean trees that are significantly simpler than the trees
in the dataset. This explains the reduced complexity of the TED means found
by Trinh and Kimia [TK10]. Similarly, in the graph embedding work of Bunke
and collaborators [FVS+10, RB09b], severe restrictions on the solution space
and geodesics (edit paths) have to be imposed in order to have well defined
constructions as simple as midpoints; restrictions that are kept implicit.

Even when geodesics are locally unique, means need not be unique. Consider
data uniformly distributed along the equator of a sphere: both poles will mini-
mize eq. 2.1. In shape analysis, this problem often occurs as most shape spaces
are non-linear. In Riemannian manifolds, such as the sphere example, existence
of at least locally minimizing geodesics is guaranteed. Tools from differential
calculus are available for the optimization of eq. 2.1 and Karcher [Kar77] pro-
vides conditions for local existence and uniqueness of the mean. Hence, in most
statistical contexts one is content to find a (reasonably large) dataset radius
within which geodesics and local minimizers of eq. 2.1 exist and are unique; for
the unit sphere this radius is π/2.
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The Appolonios problem (eq. 2.1) in Euclidean space can also be solved by
geometric constructions using only geodesics and weighted midpoints, which
carry over to more general metric spaces. But do different methods provide
the same solutions? Even locally? Already in the Riemannian framework,
non-linearity introduces difficulties in other constructions. A simple example is
Principal Component Analysis, which in the Euclidean case can equally well be
defined via maximization of projected variances on subspaces or minimization
of reconstruction errors. But these approaches lead to different solutions in the
Riemannian setting, e.g., Fletcher’s PGA [FLPJ04] and Huckemann’s GPCA
[HHM10] are not equivalent. With this in mind, one should tread carefully
when generalizing from Euclidean methods.

Tree-like shapes (and more generally graph-like shapes), among others, present
a great challenge, as they are not naturally modeled as elements of smooth
manifolds. Any tree-shape can be obtained as a limit of a large number of tree-
shapes with very different tree topologies, creating natural self-intersections in
tree-space. This may prevent the use of smooth optimization methods. How-
ever, this complexity does not prevent the use of treelike shapes. In computer
vision they appear in skeletons and shock-graphs for 2D shape recognition and
classification [DSD09, KTSK00, TK10], and they are often encountered in med-
ical imaging, as airways and blood vasculatures have natural tree-like shapes
[MKS+09, TMP+05].

Feragen et al. [FLL+10] introduced a construction of tree-like shape spaces
with a metric called Quotient Euclidean Distance (QED), which gives existence
and local uniqueness of geodesics. This follows from the fact that they are
locally CAT(0)-spaces or spaces of non-positive curvature, a concept introduced
by Gromov [Gro87] and discussed in the monograph [BH99]. Billera, Holmes and
Vogtmann [BHV01] have proposed a CAT (0)-space structure for phylogenetic
trees, but these trees are abstract objects not encoding 2D or 3D shape, with
much more restricted variations.

Spaces of tree-like shapes, in spite of their complexity, offer a very good
framework for computing means through geometric solutions to the Appolo-
nios problem. In this paper we explore three such constructions: the centroid,
Birkhoff shortening and weighted midpoints. The methods are tested on leaf
vasculature shapes and airway tree shapes.

The rest of the article is organized as follows. In sec. 2.2 we discuss the
space of tree-like shapes along with a metric that gives locally unique geodesics.
We review the basics of metric geometry in spaces of non-positive curvature
in sec. 2.3. This leads us to the theoretical novelty of the paper as we prove
that unique means exist in such spaces in sec. 2.3.1. We then discuss various
ways of defining and computing means (sec. 2.4) followed by an experimental
comparison of these means (sec. 2.5). Finally, the paper is concluded with a
brief summary and a discussion of open problems.

2.2 The space of tree-like shapes

We are interested in spaces of tree-like shapes as defined by Feragen et al. [FLL+10].
Tree-like shapes are represented as rooted, ordered, binary trees T = (V,E, r,<)
with edge attributes f : E → Rn. The attributes take values in Rn, and describe
the shape of the particular edge, e.g., via landmark points. The branch order
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Figure 2.2: Higher-order vertices can be represented by the binary tree by col-
lapsing internal branches, as the dotted blue lines.

can, for instance, come from a planar ordering of branches. To compare the
tree-shapes within one single shape-space, all tree-shapes are parametrized us-
ing the same combinatorial tree T , which is sufficiently large to describe all the
tree-shapes in our dataset. Trees with fewer edges are represented by collapsing
redundant branches, as in fig. 2.2. Higher-order bifurcations are represented
in a similar fashion, also using collapsed branches. This gives a representation
space X =

∏
e∈E Rn, where all tree-like shapes are represented at least once. A

space of ordered tree-like shapes X̄ is defined as a quotient space of X by iden-
tifying different order-preserving representations of the same tree-shape. This
corresponds to folding the Euclidean representation space and gluing it along
different representations of the same trees. From the Euclidean metric on X,
Feragen et al. induce the quotient metric on X̄, which in this case is called
the QED metric. The quotient metric is a standard mathematical construc-
tion [BH99], which here creates a piecewise Euclidean metric. If the Euclidean
metric on X is replaced with an l1 product metric, the TED metric is retrieved
as quotient metric on X̄.

Planar trees come with a given branch order (left to right) on the set of
children of each branch, and hence a branch order on the entire tree is easily
obtained. Trees that reside in 3D space are not ordered in the same way. In
order to optimally compute the distance between two trees, it is necessary to
consider all possible orders on the two trees. At a first glance, this seems to give
problems with computational complexity. However, when studying shapes that
are close together this is not necessary. We can induce an order on each tree by
fixing an order on one (sufficiently large) tree, aligning the other trees with the
chosen one. The alignment can be done by finding the order that minimizes the
distance between the trees. This way, we effectively reduce our set of unordered
trees to a set of ordered trees. This becomes a great computational relief when
we start computing average 3D trees, since we make a large number of distance
computations as part of the iterative midpoint procedures.

2.3 Curvature and means in metric spaces

A very favorable property of the space of tree-like shapes is that its local geom-
etry facilitates statistical computations. To be more precise, at “generic points”
(that is, at any randomly chosen point) the space is locally CAT (0). This con-
cept is at the heart of our analysis, and is novel in the context of computer
vision. Thus, we shall dedicate a few lines to explaining what CAT (0) spaces
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are and why they are nice geometric objects.
One way of studying the geometry of general metric spaces is to compare

them to spaces whose geometry we understand well, referred to as model spaces.
The model spaces are spheres (positively curved), the Euclidean plane (flat, no
curvature) and hyperbolic spaces (negatively curved). Since metric spaces can
be rather pathological, a typical approach to defining curvature is to bound the
curvature of the space at a given point from above or below. In this article
we study spaces of non-positive curvature, i.e., their curvature is bounded from
above by 0. Due to the curvature bounded by 0, we study the metric spaces by
comparing triangles in the metric space with triangles in the Euclidean plane, as
in Gromov’s metric geometry [Gro87, BH99]. Mathematically, this is expressed
by the CAT (0) condition:

Definition 2.2 (CAT (0) spaces, non-positive curvature) LetX be a geodesic
metric space, that is, a space in which all points can be joined by a geodesic.
The length of a path is defined by the metric d in X. A geodesic triangle abc
in X consists of three points a, b and c in X, along with geodesic paths joining
the points: [ab], [bc] and [ac], see fig. 2.3. There exists a triangle āb̄c̄ in the
Euclidean plane with vertices ā, b̄ and c̄ and with edges [āb̄], [b̄c̄] and [āc̄], whose
lengths are the same as the lengths of [ab], [bc] and [ac]. This is a comparison
triangle for abc, see fig. 2.3.

For any point x sitting on the segment [bc], there is a corresponding point x̄
on the segment [b̄c̄] in the comparison triangle, such that ‖x̄ − b̄‖ = d(x, b). If
we have

d(x, a) ≤ ‖x− a‖ (2.3)

for every such x, then the geodesic triangle abc satisfies the CAT (0) condition.
The metric space X is a CAT (0) space if any geodesic triangle abc in X

satisfies the CAT (0) condition given in eq. 2.3. Geometrically, this means that
triangles in X are thinner than triangles in R2. Spaces which are locally CAT (0)
are non-positively curved .

A few examples of CAT (0) spaces are:

1) Euclidean space is a CAT (0) space.

2) Any non-positively curved manifold is locally CAT (0).

3) The union of two intersecting planes is a CAT (0) space [BH99, Chapter
II Theorem 11.3].

4) The space of tree-like shapes, see fig. 2.4, is locally CAT (0) at generic
points [FLL+10, Theorem 2].

2.3.1 Means in CAT (0) spaces

As shown in [FLL+10] and discussed above, for generic points in the space of
tree-like shapes there exists a radius rx > 0 such that the ball B(x, rx) is a
CAT (0)-space. For a point x in the shape space in fig. 2.4, whose distance to
the projected origin is d, rx = d tan(π/8); namely the radius within which all
points are joined by a unique geodesic. Hence, if means exist and are unique in
CAT (0) spaces, they exist and are unique for sufficiently dense sets of tree-like
shapes.
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Figure 2.3: Left: A geodesic triangle, right: the corresponding comparison
triangle in the plane R2.

quotient

Figure 2.4: The simplest nontrivial example of a tree-shape space X̄ (right)
with representation space X (left): Trees with two edges e1 and e2, with scalar
edge attributes. Here we see the path from T̄1, with two edges, through T̄ ,
with one edge, to T̄2, also with two edges. The one-branch tree T̄ has two
representatives in X on the e1 and e2 axes, respectively, which are glued together
in the shape space (right). Note how the path from T̄1 to T̄2 in X̄ is made from
concatenated Euclidean lines in X, with a “teleportation” (dotted line) gluing
the representatives T and T ′ of T̄ together.
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Theorem 2.4 Means exist and are unique in CAT (0)-spaces.

Proof: Let (X, d) be a CAT (0)-space. It follows from the CAT (0)-inequality
that given any fixed y ∈ X, the function dy : X → R given by dy(x) = d(x, y)
is convex. Then the function d2

y is also convex since the function g : a 7→ a2

is monotone, increasing and convex. Moreover, ((1− s)dy(x) + sdy(x′))
2
<

(1 − s)d2
y(x) + sd2

y(x′) for any s ∈]0, 1[, and hence, d2
y is actually strictly con-

vex. Then Φ =
∑s
i=1 d

2
xi

is strictly convex, and the mean is a minimizer of the
strictly convex function Φ; hence it exists and is unique. �

As a direct consequence, means do exist and are even unique for datasets of
sufficiently small diameter in tree-space with the QED metric. This is in stark
contrast to the TED metric where means are practically never unique.

2.4 Computing means

For finite point sets in the Euclidean space, the easiest way to compute the
mean is the closed form solution

∑
xi/N . This solution does not carry over to

non-linear spaces, but other techniques do.
One way to optimize eq. 2.1 is to use gradient descent. However, in the

case of tree-structured data, the shape space is not even a smooth manifold.
Hence, we cannot perform a regular gradient descent, but would have to develop
optimization methods for non-smooth spaces. Moreover, we do not have an
analytic expression for the gradient even in the smooth parts of the space. In
order to numerically approximate derivatives, the distance function would need
to be evaluated a large number of times. This makes optimization schemes
unattractive for computing means in tree-space, where distances are expensive
to compute.

Since the two most obvious methods for computing a mean shape are not
applicable in tree-space, we need to look for alternative ways of computing
means, which do not require evaluating too many distances. In this paper
we study three iterative algorithms, which are all based on halving geodesics,
namely centroids, Birkhoff shortening and weighted midpoints.

2.4.1 The centroid

The centroid c(A) of a dataset A = {x1, . . . , xN} in a geodesic metric space
(X, d), is defined as follows by Billera, Holmes and Vogtmann [BHV01]:

If N = 2, then c(A) is the midpoint of the geodesic connecting the two
points x1 and x2. Assume that we have a working definition of centroid for
datasets with at most N − 1 points. Then define a set of subsets A1, . . . , AN by
setting Ai = A\{xi}. Define a new N -element set c1(A) = {c(A1), . . . , c(AN )},
that is replacing A by centroids for each (N − 1)-element subset of A. This
is illustrated in fig. 2.5. Define a sequence of sets ck(A) for k ∈ N by setting
ck(A) = c1(ck−1(A)); if the sequence ck(A) converges to a single point c ∈ X,
then c is the centroid of A.

It is easy to see that in Euclidean space, the centroid is just the regular
mean

∑
i xi/N . Billera, Holmes and Vogtmann [BHV01, Theorem 4.1] prove

that in CAT (0)-spaces, the centroid construction converges to a unique point.

33



Figure 2.5: This illustration is best viewed in color. The centroid process is
defined recursively with respect to the number of elements in the dataset. On
the 4 point dataset A = {x1, x2, x3, x4}, each iteration consists finding the
centroids of four 3-point subsets of A. Left: The iterative process illustrated
for a 4 point dataset, and the centroids are denoted x1

1, x
1
2, x

1
3, x

1
4. Right: For

datasets with 3 points, the centroid process coincides with Birkhoff shortening.

It is, however, unknown whether this point is generally the mean, as defined in
eq. 2.1, or a different point.

Algorithmic properties

The centroid is nice in theory since it defines a well-posed problem: centroids
exist and are unique in CAT (0) spaces. However, its algorithmic properties are
not attractive. The computational complexity of computing c(A) for a dataset A
with N elements, is of the order N times the computational complexity of com-
puting c(A′) for a dataset A′ with N−1 elements, i.e., O(N !). In addition, each
step involves an iterative convergence procedure, whose complexity is unknown.
Combined with an expensive metric, the centroid is essentially intractable for
datasets, which are sufficiently large to be interesting. This motivates us to
investigate simpler algorithms that compute means in the Euclidean case.

2.4.2 Birkhoff shortening

Another method for computing means is given by Birkhoff curve shortening,
which is used in metric and differential geometry to generate closed geodesic
curves. Given a closed curve γ : S1 → X from the unit circle into a (locally)
geodesic metric space X, sample the curve by picking N points z1, . . . , zN on S1

and consider their images xi = γ(zi), setting A = {xi|i = 1, . . . , N}. Start an
iterative process by replacing each point xi by the midpoint x1

i of the geodesic
connecting xi to xi+1, where we define xN+1 = x1. Together with the geodesic
segments we now have a new closed curve; see fig. 2.6 for an illustration. This
process can be continued until convergence, which is ensured by Theorem 2.5
below. Note that when A contains three elements, the centroid procedure coin-
cides with the Birkhoff shortening, see also fig. 2.5.

In Euclidean space it is easy to see that this process converges to the mean
of the point set A. Trinh and Kimia [TK10, Conjecture 1] conjecture that the
same holds for a wide range of spaces; we are less optimistic and conjecture that
the claim holds locally at generic points for tree-space with the QED metric.
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Figure 2.6: Left: Birkhoff curve shortening: Replace a sampled curve by new
samples generated at the midpoint of each segment. The process converges to
a closed geodesic. Right: By collecting midpoints from every second iteration
(in colors), we get two Cauchy sequences, which must converge since the space
is complete. It follows that the procedure converges to a closed curve.

Theorem 2.5 Let (X, d) be a complete, geodesic metric space and suppose given
an ordered set of points A = {x1, . . . , xN} in (X, d). The Birkhoff shortening
process converges to a closed geodesic, and if the space (X, d) does not have
closed geodesics, then the Birkhoff shortening process converges to a single point.

A simpler form of this theorem is stated without proof by Trinh and Kimia [TK10,
Proposition 1]; we give the proof in the case of a geodesic metric space, as the
proof also sheds some light on the difficulties and potential dangers.
Proof of Theorem 2.5: We first note that each step in the Birkhoff shortening
process will make the loop in question shorter, assuming that the current curve
is not a closed geodesic. To see this, note that∑

d(xi, xi+1) =
∑(

d(xi, x
1
i ) + d(x1

i , xi+1)
)

=
∑(

d(x1
i , xi+1) + d(xi+1, x

1
i+1)

)
≥
∑
d(x1

i , x
1
i+1),

(2.6)

where the first equality comes from the fact that the points x1
i are midpoints

of geodesic segments, the second equality is a rearrangement of terms, and the
last inequality comes from the triangle inequality; see fig. 2.6. This shows that
Birkhoff shortening will not make the curve longer. If the original loop is not
a geodesic curve, then at one of the points xi, the loop is not a local geodesic.
The curve connecting the midpoints before and after xi is not a geodesic, and
hence, replacing with a geodesic will create a strictly shorter loop.

Next, we need to show that the process converges. The lengths of the con-
secutive curves form a decreasing sequence of non-negative real numbers, which
must converge towards some length l. Moreover, the odd/even midpoint se-
quences shown in fig. 2.6 are Cauchy (follows from the CAT (0) criterion) and
must converge, so the sequence of loops converges to a new loop.

Finally, since we have already shown that for non-geodesic loops, Birkhoff
shortening will make the curve shorter, the limit loop must be a closed geodesic.
But then, if the space does not have closed geodesics, Birkhoff shortening will
converge towards one point. �

Corollary 2.7 Since they have unique geodesics [BH99, Proposition II.1.4],
CAT (0) spaces cannot have closed geodesics. Hence, the Birkhoff shortening
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procedure converges to a point in CAT (0) spaces. In particular, it converges
for sets of tree-like shapes with sufficiently small diameter.

We have shown that for any given initial order on a sufficiently bounded
set of tree-like shapes, the Birkhoff shortening procedure converges to a point,
but we do not know whether any two orders give the same point. For general
CAT (0) spaces, we doubt that this is true. Consider the Birkhoff shortening
process shown in fig. 2.6 in a space whose curvature varies strongly (although
staying non-positive). The shortening process would be highly asymmetric and
it is unlikely that different set orders would give the same mean. This also
gives potential problems with one of the algorithms used for TED-means by
Trinh and Kimia, where the set order is permuted in every iteration in order to
speed up convergence. However, in tree-space, the local structure is nice almost
everywhere, being either flat or an intersection of flat regions. Hence, we believe
that the Birkhoff shortening mean may well be independent of its initial order
for sets of tree-like shapes in the QED metric.

The computational complexity of each step in the Birkhoff shortening algo-
rithm is O(N) times the complexity of finding geodesic midpoints. This makes
the Birkhoff shortening procedure suitable for computing means when distances
are expensive to compute. The iterative nature of the procedure does, how-
ever, make it vulnerable to accumulation of numerical noise and approximation
errors.

2.4.3 Weighted midpoints

One of the simplest algorithms for computing the mean of a set in Rn is based
on the following simple observation:

If we denote by m(A) the mean of the finite subset A = {x1, . . . , xN}, then

m(A) =
xi + (N − 1)m(A \ {xi})

N
. (2.8)

To see that eq. 2.8 holds for A ⊂ Rn, just rewrite the equation analytically in
the case i = 1:

x1 + . . .+ xN
N

=
x1 + (N − 1) · x2+...+xN

N−1

N
. (2.9)

This indicates a recursive procedure for finding the mean of A in more general
spaces: The mean w1 of {x1, x2} is the midpoint of the geodesic connecting x1 to
x2. The mean w2 of {x1, x2, x3} is the point on the geodesic from w1 = m(x1, x2)
to x3 that sits 1/3 along the way, etc. This is a finite procedure, whose result
we call the weighted midpoints mean. See also fig. 2.7.

As the Birkhoff shortening mean, the weighted midpoints procedure also
depends on an initial set order, and it is not clear whether different orders give
the same results. Again, we believe that the nice local structure of tree-space
may be enough to secure independence of initial order.

2.5 Experiments

We now experimentally compare the different approaches on datasets of tree-
structured shapes in the space of tree-like shapes [FLL+10] endowed with the
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Figure 2.7: The weighted midpoints construction.

QED metric. Specifically, we test the algorithms on three different datasets of
varying difficulty and size.

The QED geodesics and midpoints were computed using Algorithm 1 from
the article by Feragen et al. [FLL+10] on depth 3 trees, leaving space for 1 or
2 structural changes. This is an approximative algorithm, where the geodesics
might pass through trees of depth higher than 3 in order to make the structural
changes. Whenever the midpoints are of depth > 3, they are cut off at depth 3
in order to initiate the next iteration. This introduces some numerical errors,
which may accumulate in long iterative procedures.

2.5.1 Synthetic data

The first test set consists of synthetic planar trees which are designed to test
the system’s ability to cope with pairs of bifurcations that are close to form-
ing trifurcations. The whole dataset is shown in fig. 2.8. Additional figures
and movies illustrating the iterative processes are found in the supplementary
material.

Small dataset. First, all three different algorithms were ran on a smaller
set consisting of the 4 synthetic planar trees shown in the top row of fig. 2.8.
Since the weighted midpoints and Birkhoff shortening algorithms potentially
depend on the order of the dataset, they were ran several times with different
randomly selected initial orders. In fig. 2.9a we see the results of the weighted
midpoints algorithm for all possible orders on the dataset plotted together. In
fig. 2.9b, we see the points in the Birkhoff shortening 5th iteration on the same
dataset. In fig. 2.9c we see the result of the centroid algorithm. We clearly see
that the three algorithms give qualitatively very similar results, also with the
different initial orders used in the weighted midpoints and Birkhoff shortening
algorithms.

In order to experimentally check whether the found centroid c actually mini-
mizes the function Φ from eq. 2.1, we selected 100 tree-shapes by adding random
normal distributed noise to the centroid edges, and evaluated Φ at each point.
The smallest value of Φ was found at the centroid, indicating that the found
centroid actually is a mean.

Full dataset. The weighted means and Birkhoff shortening algorithms were
also tested on the whole dataset in fig. 2.8, again using different orders. The
results are found in fig. 2.10 and fig. 2.11. The centroid was left out of this
experiment, since already here, the complexity is too demanding.

Although the Birkhoff shortening and weighted midpoints algorithms depend
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Figure 2.8: Seven synthetic planar trees.

(a) (b) (c)

Figure 2.9: Comparison of algorithms on a set of four synthetic planar trees.
(a) Results of weighted midpoints on the first four trees from fig. 2.8. The
algorithm was run for all different initial orders and the results are plotted on
top of each other. (b) Result of Birkhoff shortening after 5 iterations, starting
from the shown set order on the first four trees from fig. 2.8. The 5th iteration
points are plotted on top of each other. (c) Result of the centroid algorithm on
the first four trees from fig. 2.8.

on the order of the dataset, we clearly see that the attained results are robust
with respect to varying initial order. More importantly, we see that the results
of the faster methods are practically identical to the centroid, which has good
theoretical properties, but is expensive to compute. This is very comforting as
it indicates that we can compute usable means with the Birkhoff shortening and
weighted midpoints algorithms. In the remainder of this paper, we will only use
these algorithms as the centroid is computationally too demanding.

Figure 2.10: Weighted midpoints results for nine eight different initial orders on
the dataset shown in fig. 2.8.
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Figure 2.11: Birkhoff shortening results for three different orders on the dataset
shown in fig. 2.8.

Figure 2.12: An ivy leaf, with a subtree of its vascular tree.

2.5.2 Leaf morphology

Our first example of natural tree-like structures comes from biology. In botany,
tree-like structures are found as vasculatures in leaves, and are studied in order
to understand leaf morphology [FA60]. These structures form excellent proof-
of-concept examples, as the tree-structures are necessarily planar, and hence the
branches are ordered nicely from left to right.

We extract vascular structures for a set of 10 ivy leaves, see fig. 2.12, giving
the planar trees shown in fig. 2.13. Using weighted midpoints for six randomly
chosen dataset orders we obtain the mean trees showed in fig. 2.14. Again, the
weighted midpoints mean trees initiated with different initial orders look nearly
identical. Similarly, in fig. 2.15, we see 12th iteration Birkhoff shortening mean
trees for a random initial order, which are also very similar to the weighted
midpoints results. This is a clear indication that the two algorithms compute
the same mean.

Figure 2.13: Vascular structures from 10 ivy leaves.
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Figure 2.14: weighted midpoints results for the leaves shown in fig. 2.13 for five
random dataset orders.

Figure 2.15: The Birkhoff shortening 12th iteration results for the leaves shown
in fig. 2.13 for a random dataset order.

2.5.3 Airway tree-shape modeling

The study of tree-like shapes is strongly motivated by their presence in human
anatomy, where they appear as delivery systems for fluids and air. Birkhoff
shortening and weighted midpoints means are computed for a dataset consisting
of 10 3D airway trees extracted from CT scans [LSA+10]. The trees represent
the centerlines of the first four generations of the human airway tree as shown
in fig. 2.16. The trees are aligned at the endpoint of the root branch (trachea).
As with the planar trees, the two algorithms provide very similar means. Both
algorithms, and Birkhoff shortening in particular, seem robust even for 3D trees.

2.6 Discussion and conclusion

We have studied the concept of means in non-Euclidean spaces; generally in
CAT (0) spaces and specifically in spaces of tree-like shapes. We have shown
that means exist in CAT (0) spaces; a result which tells us that means exists
locally in spaces of tree-like shapes. The generality of the result allows it to be
transferred to other settings. In particular, our results should transfer to the
space of attributed graphs defined by Jain and Obermayer [JO10].

Usually, means can be found in non-Euclidean spaces using standard opti-
mization techniques such as gradient descent. The computational complexity of
the QED metric, however, makes this approach infeasible for trees. We consider
three different algorithms for computing means in Euclidean space: the cen-
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Figure 2.16: (a) The ten airway trees in the dataset are shown in gray; in black
is one of the weighted midpoints means. (b) Five weighted midpoints means
computed from different initial orders. (c) The ten airway trees in the dataset
are shown in gray; in black is the Birkhoff shortening mean. (d) Five Birkhoff
shortening means computed from different initial orders.
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troid, Birkhoff shortening and weighted midpoints. As these rely on on dividing
geodesics they are readily generalized to non-Euclidean spaces.

From a theoretical point of view, the centroid is the best definition of mean
shape. It exists, is unique and is, by definition, invariant of the order of the
dataset. Moreover, numerical experiments indicate that it coincides with the
mean. The algorithm, however, has complexity O(N !), which makes it too
expensive to be of practical use. On the other hand, the Birkhoff shortening
and weighted midpoints means are not quite as nice; while they converge to a
single point, this point may depend on the order of the data. This is not ideal.
However, experimental results indicate that, up to numerical and approximative
noise, different orders actually give the same means for both methods. Even
better: these means seem to coincide with the well-defined centroid. On this
basis, we conjecture that for tree-structured data, all algorithms compute the
same mean tree. As to which method works the best, the simplest seems to
win. Birkhoff shortening is an iterative procedure, which makes it slow and
vulnerable to accumulating errors. The weighted midpoints mean, on the other
hand, comes out as a robust and efficient way of computing mean trees.

We have, thus, provided a practical algorithm for computing mathematically
well-defined “average trees”; something that has not been presented elsewhere
in the literature. This can potentially serve as a much-needed tool in medical
image analysis, where airways and vascularization systems serve as reference
structures in the human body. Shape statistics on these structures may provide
new insight into how diseases such as COPD (smokers lung) affects the geometry
of human anatomy.
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â¿” ECCV 2002, volume 2352 of Lecture Notes in Computer Sci-
ence, pages 83–98. 2002.

[SKK04] T. B. Sebastian, P.N. Klein, and B.B. Kimia. Recognition of shapes
by editing their shock graphs. TPAMI, 26(5):550–571, 2004.

46



[SLC+02] Thorsten Schlathölter, Cristian Lorenz, Ingwer C. Carlsen, Steffen
Renisch, and Thomas Deschamps. Simultaneous segmentation and
tree reconstruction of the airways for virtual bronchoscopy. volume
4684, pages 103–113. SPIE, 2002.

[SLD+11] L. Sørensen, P. Lo, A. Dirksen, J. Petersen, and Marleen de Brui-
jne. Dissimilarity-based classification of anatomical tree structures.
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