DEPARTMENT OF COMPUTER SCIENCE (DIKU)
UNIVERSITY OF COPENHAGEN

Design of Reversible Logic Circuits using
Standard Cells

— Standard Cells and Functional Programming
Michael Kirkedal Thomsen

_—

Technical Report no. 2012-03
ISSN: 0107-8283

Abstract

This technical report shows the design and layout of a library of
three reversible logic gates designed with the standard cell methodol-
ogy. The reversible gates are based on complementary pass-transistor
logic and have been validated with simulations, a layout vs. schematic
check, and a design rule check. The standard cells have been used
in the design and layout of a novel 4-bit reversible arithmetic logic
unit. After validation this ALU has been fabricated and packaged
in a DIL48 chip.

The standard cell gate library described here is a first investiga-
tion towards a computer aided design flow for reversible logic that in-
cludes cell placement and routing. The connection between the stan-
dard cells and a combinator-based reversible functional languages is
described.

Keywords: Reversible computing, reversible circuits, standard cells, CMOS,
computer aided design

Contents

1 Introduction 4
1.1 Reversible Logic 4
2 Implementation of Reversible Gates 5
2.1 Basic Transistor Theory 5
2.2 Adiabatic Switching L oL 6
2.3 Reversible Complementary Pass-Transistor Logic 7
3 Standard Cells for Reversible Logic 8
3.1 Designing the Standard Cells 8
3.2 The Feynman Gate 9
3.2.1 Design Rules and Layout Details 10
3.3 The Fredkin Gate 12
3.4 The Toffoli Gate, 14
3.5 Towards Computer Aided Design 14
3.5.1 Numberof Gates, 14
3.5.2 Input/Output Placement and Gate Size 16
3.5.3 Transistor Placement ands Gate Size 16
4 Implementation and Fabrication of an ALU 17
4.1 The Schematic 18
4.2 The Layout 18
4.3 The Pad Ring and Device Package 20
4.4 Design Rule Check 20

5 Design of Reversible Circuits using Standard Cells and Func-
tional Programming 22
5.1 Current CAD Approaches to Reversible Logic 23
5.2 A Combinator Description Language 23
5.3 Combinators and Standard Cells 24
6 Conclusion 25
Bibliography 25

1 Introduction

Reversible computation [16, 5] is a research area characterized by having only
computational models that are both forward and backward deterministic. The
motivation for using these models comes from the prospect of removing the
energy dissipation that is caused by information destruction. Though recent
experimental results have confirmed Landauer’s theory [6], the results of apply-
ing the model to devices in today’s computing technologies is still unknown.

We will here look at the model of reversible logic and logic circuits (as ex-
plained in Sec. 1.1) and investigate how we can implement circuits with computer
aided design (CAD). In Sec. 2 we discuss how we can make reversible logic cir-
cuits in CMOS, and discuss the benefits and drawbacks of the different logic
families. In Sec. 3 we use one of these logic families to implement the basic
reversible gates in “first approach” standard cells (a design methodology from
the static CMOS family that is very suitable for CAD). In the end of the section
(Sec. 3.5) we conclude and suggest future improvements. To show that these
standard cells actually work, we have implemented and fabricated a reversible
arithmetic logic unit (Sec. 4). Finally, in Sec. 5, we discuss how a recently de-
veloped reversible functional language can be used to aid the CAD process, and,
in the future, make it possible to design more complex reversible circuits. We
shall discuss related work throughout this report.

1.1 Reversible Logic

To describe reversible logic circuits, we use the formalism of Toffoli, Fredkin [31,
14] and Barenco et al. [4]. That is, a reversible gate is defined as a bijective
boolean function from n to n values. There exist many of these gates, but we
restrict ourselves to the following basic reversible logic gates [4]:

e The Not gate (Fig. 1); the only gate from conventional logic that is re-
versible.

e The Feynman gate (Feyn, Fig. 2), or controlled-not gate, negates the input
A iff the control C is true.

e The Toffoli gate (Toff, Fig. 3), or controlled-controlled-not gate, negates
the input A iff both controls C7 and Cy are true.

e The Fredkin gate (Fred, Fig. 4), or controlled-swap gate, swaps the two
inputs A and B iff the control C is true.

A reversible circuit is an acyclic network of reversible gates, where fan-out is
not permitted.

In this work we take a completely clean approach [2]. This makes the num-
ber of auxiliary bits used an important non-standard characteristic of reversible

R S
A —X— A A Ao C

Figure 1: Not gate Figure 2: Feynman gate, Feyn.

Ch—e—C, C C
Co—¢— (3 A }CA@CB
A—&— Ap C1Co B CAQ}@B

Figure 3: Toffoli gate, Toff. Figure 4: Fredkin gate, Fred.

circuits. We define a garbage bit as a non-constant output line that is not part
of the desired result but is required for logical reversibility, An ancilla bit is a
bit-line that is assured to be constant at both input and output. Being clean
means that no garbage is allowed, as garbage bits accumulate over repeated
computation (which is likely to lead to information destruction). We can, how-
ever, compute temporary values if these are uncomputed again at a later time;
we then will call the total usage ancillae, which can be reused with each new
computation of the circuit.

2 Implementation of Reversible Gates

Reversible computation is related to other emerging technologies such as quan-
tum computation [12, 23, 7], optical computing [9], and nanotechnologies [22]
that use a similar or slightly extended set of gates.

First implementations and fabrications of reversible logic in CMOS technol-
ogy have also been accomplished (e.g. [24]). These exploit that reversible logic
is particularly suitable

e when it comes to reuse of signal energy (in contrast to static CMOS logic
that sinks the signal energy with each gate), and,

e when using adiabatic switching [15, 1] to switch transistors in a more
energy efficient way.

In fact, SPICE simulations of reversible circuits have shown that such imple-
mentations have the potential to reduce energy consumption by a factor of
10 [10, 11].

A drawback of these implementations comes from another law related to
transistors, namely that the energy consumption is directly related to the exe-
cution frequency. If one performs many computations every second, the energy
consumption per computation rises. Performing fewer computations lowers the
energy consumption per computation.

Of course, this implies that not all applications are necessarily suited for
implementation using reversible circuits. However, many embedded devices do
not need to perform billions of computations every second.

In the rest of this section will focus on how to implement reversible gates in
CMOS. First, we briefly review some basics of CMOS transistor implementa-
tion [21, 35] as used in this work, and afterward we explain how this is used in
an implementation of reversible gates.

2.1 Basic Transistor Theory

When either an nMOS or a pMOS transistor is used alone as a switch they are
referred to as a pass-transistor, but neither of them are perfect switches. nMOS

g 970 g=1
| s—" —d 0—— strong 0
nMOS /Ly, g=1 g=1
s—>—d 1—>— degraded 1
g 9=0 g=0
e s—>—d 0 —>— degraded 0
pMOS s L g g=1 g=0
s—/—d 1—— strong 1

Figure 5: nMOS and pMOS transistor description. Figure adapted from [35].

g =0,h=1 =1,h=0
g ’ g 2
L s—" —d 0——— strong 0
d
S_D_ g=1,h=0 g=1,h=0
Z s——d 1—>— strong 1

Figure 6: Pass-gate description. Figure adapted from [35].

transistors are almost perfect (called strong) for passing a low-voltage signal
(FALSE) between its source (s) and drain (d), but very bad (called degraded or
weak) for passing a high-voltage signal (TRUE). pMOS transistors on the other
hand pass a degraded low-voltage and a strong high-voltage (see Fig. 5).

As a solution we can use a nMOS and a pMOS transistor in parallel to make
a gate that passes both a strong low-voltage and a strong high-voltage signal
(see Fig. 6). This gate is called a pass gate or transmission gate. The two gate
signals can be used independently, but when designing circuits with pass gates
we often have that one gate signals g, have the negated value of the other signal
h (h = 7). We, therefore, have two complementary lines for all signals (g and
g) and, thus, call this complementary pass-transistor logic (CPL) or dual-line
pass-transistor logic.

2.2 Adiabatic Switching

Adiabatic switching [15] was introduced as a way to reduce the dissipation caused
by transistor switching and to reuse the signal energy. The word adiabatic
comes from physics and, for transistors, it is used to describe that the energy
dissipated for transistor switching tends towards zero when the switching time
tends towards infinity. The only way that we can increase the switching time
of the transistors is by using a control signal, g, that changes gradually from no
signal to either TRUE or FALSE instead of a signal that changes abruptly.

Transistor theory provides the two following rules that adiabatic circuits
must follow [13]:

e The control signal of a transistor must never be set (TRUE or FALSE) when
there is a significant voltage difference between its source and drain.

AgeC c A v\C{'iol
);\CMK Ca C1
A A®C T

A®C1Co

|

Figure 7: Implementation of Feyn-

.) Figure 8: Implementation of Toffoli
man gate in R-CPL using 4 pass

gate in R-CPL using 8 pass gates

gates (8 transistors). Figure (16 transistors). Figure from [32]
from [32]
CA®CB c A CA®CB c A
C e} C e}
B CA9CB B CAaCB

Figure 9: Implementation of Fredkin gate in R-CPL using 8 pass gates (16
transistors). Figure from [32]

e The control signal of a transistor must never be turned off when there is
a significant current flowing between its source and drain.

Notice that an adiabatic circuit is not necessarily a reversible circuit and wvice
versa. In the following we will describe an adiabatic logic family that implements
the reversible gates.

2.3 Reversible Complementary Pass-Transistor Logic

Pass-transistor logic has been used in conventional computers for many years
in order to improve specialized circuits such as Static RAM and other circuits
that use many XORs!. This was used for reversible gates by De Vos [10], who
with the help of Van Rentergem implemented the reversible gates [32] from
Sect. 1.1. This logic family is called reversible complementary pass-transistor
logic (R-CPL).

The gates are designed as controlled rings, where pass gates are used to
open or close connections according to the desired logical operation (Figs. 7, 8,
and 9). As we can see there is no Vyg or Vi, in these designs, implying that no
charge can be added (or removed) and thus the gates must be parity preserving?.
The Cnot and the Not gates are not logically parity preserving in the sense of
conservative logic, but we can make them so, by using a complementary-line

1Static CMOS is poorly suited for the implementation of XOR gates compared to AND
and OR gates

2A gate or circuit is parity preserving if the number of input and output lines that has the
value TRUE are equal.

implementation®. The Fred gate is parity preserving which we can see in the

gate implementation as two non-connected cycles. Furthermore the design of
the gates implies that current can flow both ways though the circuits and, thus,
the inverse of a gate is itself with the input lines swapped with the output lines.

3 Standard Cells for Reversible Logic

The standard cell methodology is the most widely used way to design digital
ASICs today. The idea is to make automated designs much simpler by having
a standard cell library where the elements easily fits together. Each cell (or
gate) in this library implements a logical operation (NOT, AND, OR, etc.) and
must uphold some constraints; e.g. they must have the same physical height
and some wire connections must match. On the other hand, then the functional
complexity of the gates are much different, so their standard cell implementation
can vary in, e.g., physical width and number of transistors.

3.1 Designing the Standard Cells

The standard cells made in this work implement the basic reversible gates:
Feynman, Toffoli, and Fredkin gates. No layout for the Not gate is made as this
gate, in a dual-line technology, is a simple swap of the wires; no transistors are
needed.

The idea is to design the standard cells such that they mirror the diagram
notation in that all signals flow from left to right (or opposite for the inverse
circuit). By definition a reversible gate has the same number of inputs and
outputs, and because of the no fan-out restriction, routing between the cells is
simple and placing the cells directly side-by-side is possible. This will not work
for static CMOS, which have many-to-one gates and fan-out. Our standard cells
will have the following properties:

e All basic reversible gates are either two- or three-input gates and, there-
fore, on each side there is up to six input/output pins (three dual-line
pins).

e A Vyy and a Vis-rail are added on the top and bottom, respectively. These
are important for polarization of the substrate and the well.

e Only two metal layers are used. This will leave enough metal layers for
routing between the cells.

e The height of all gates is 15 pm. An n-well spanning the entire width
has a height of 8 ym. To ease hand-designing, each of the six pins are
1 pm high and are equally spaced with a 1 um gap. In addition to this,
the two rails gives a total height of 15 um. The height of the n-well has
been chosen to fit the two rows of transistors and is larger than half the
height of the cell because p-transistors must be about three times wider
than n-transistors to have similar resistance.

3Any gate can be made parity preserving by adding a complementary line, implying that
parity preserving gates are not necessarily reversible gates and vice versa.

Vdd Vdd

1 um
1 um

E
3

N
N

]

Logical Operation F' 77

El
\
\
o]

F(A’ B’ C) = (P’ Q7 R)
15 pm

?

Fﬁl(P7 Q7 R) = (A7 B7 C)

B
N

A
IS

al
N
N
=]

Vss Vss

Figure 10: General layout of the basic cells. The Figure 11: Layout of spac-
height is fixed but the width can vary. The yel- ing cells that match the gate
low box is the n-well. cells.

e All pins to and from the cell are made in metal layer 1. Routing inside
the cell is made through both metal layers 1 and 2. (The metal layers are
numbered from 1 and up starting from the layer above the polysilicon and
diffusion. In our designs we use at most three metal layers.)

Some “space” cells of different width are made, so the designer can use them
when more space for wiring is needed. These only contains Vg4, Vis, and the
well. A general layout of standard cells is shown in Fig. 10 and an example
space cell is shown in Fig. 11. The (up to three) inputs are here labeled A, B,
and C, with the outputs labeled P, @, and R.

All layouts are made in 0.35 um (transistor length) technology from ON
Semiconductor using the Cadence Virtuoso© CAD tool. It is based on a p-
substrate where an n-well is added. All layouts have successfully been validated
by the design rule check from the foundry and a layout versus schematic check
have successfully validated the functionality with respect to the schematics from
Sec. 2. Previously, the schematics were validated by electrical simulations using
the Spectre® simulator that is part of the Cadence tool.

3.2 The Feynman Gate

The simplest of the cells are the Feynman gate; it has a width of 10.5 um,
and uses 8 transistors. The first step in the design is to find a good geometric
placement of the transistors. We want this placement to have the smallest width
possible (to reduce the total circuit area), but at the same time we also want the
routing within the gate to be simple; we shall not use more than metal layers 1
and 2.

The abstract layout of the Feynman gate is shown in Fig. 12. In the
transistor-placement each column contains one n- and one p-transistor, both
connected with the same source and drain signal and this will, thus, work as a
pass-transistor. There are four of these pass-transistors, which fits the schematic

| Feynman gate | Toffoli gate | Fredkin gate |

Inputs/outputs 2 3 3
Number of transistors 8 16 16
Cell width 10.5 pym 20 um 16 um
- hereof for routing only 2.5 ym 7 um 5 um

Table 1: Summary of the sizes of the cells

from Sec. 2. The advantage of this abstract layout is that all source and drain
connections are easy: @, Q, B, and B are all placed on a single vertical metal
wire. The drawback is that the transistor routing is not simple: notice that
the pins to the gates, A and A, is alternate in both the vertical and horizontal
direction.

The actual CMOS layout of the abstract layout is shown in Fig. 14. Before
explaining the layout (in Sec. 3.2.1), we would like to draw attention to the
legend in Fig. 13. The top of the legend shows the color scheme used for polysil-
icon, diffusion (both n+ and p+), and the two used metal layers. The slightly
larger boxes in the middle defines the area for the n-well and how to specify
that diffusion is either of p+ or n+ type; these two basically determines if the
transistors are n- or p-transistors. Finally, the bottom of the legend shows a via
between metal layers 1 and 2, and the contacts (connections to polysilicon and
diffusion); the vias can be hard to locate in the layout as they often are placed
on top of the contacts: but in general, they are placed at the ends of metal 2
wires.

3.2.1 Design Rules and Layout Details

The standard cells designed here are intended for use in actual chips and, there-
fore, the fabrication process imposes some restrictions on the designed layout.
These restrictions ensures that there is a high probability that circuit functions
correctly (allthrough it is not guaranteed). Most of the restrictions comes from
the making of the lithography masks.

In the design phase it is easy violate one or more of these rules, so the
design tools provide a design rule check (DRC) that can validate the design
agains a list of rules provided by the foundry. The most well-known of these
rules is the (minimal) transistor length (the single number that characterizes
the technology: 0.35 pm for this particular technology), which manifests as the
width of the polysilicon when it intersects the diffusion in the layout.

Most of the design rules are very technical: they defines the minimal width
of wires, spacing between wires, the amount of metal that is needed around
vias and contacts, etc. However, all these rules do not necessary reflect the
best design choices. For example, in our designs the nMOS transistors are
three times wider than the pMOS transistors (which is equal to the minimum
transistor width), because we would like to have similar resistance in the two
types of transistors.

The layout of the Feynman gate is shown in Fig. 14 and it upholds the design
rules of the technology. Table 1 lists some basic facts about layouts of the three
reversible gates.

10

Polysilicon

[¢]

I<zzzz2 <

[]

L2240 <

Diffusion
Metal layer 1

Metal layer 2

n n
5 [l 1 3§
2 << 222z < - n-well
g 2
A R p+ Diffusion
w SZZZZza ZzAas o (sets Diffusion type)
% II:I % Metal 2 - Metal 1 Via
a g
Metal 1 - Polysilicon Contact
Metal 1 - Diffusion Contact
Figure 12: Abstract layout of the Figure 13: Legend for CMOS lay-
Feynman gate. outs. All diffusion that is within the

dotted green boxes are p+ diffusion,
while the rest is n+ diffusion.

Figure 14: CMOS layout of the Feynman gate.

11

772 <ZZA
L © |
YZZ772 < [<ZZA
| S |
<z A 7 A<t <2 241
| 9 |
| B |
< A 7 A<t <2 WZAI< g
& L= | Z
z YZZ772< |[<IZZA g
: [© | ;
g @
- YZZ77AI< <ZZA 3
e I =
o

Figure 15: Abstract layout of the Fredkin gate.

3.3 The Fredkin Gate

Functionally, the Fredkin gate seems more complicated than the Feynman gate.
It has one extra input (three in total) and updates two outputs. Also, the
logical formulation of a swap is more complex (see Fig. 4). But the schematic
in Fig. 9 shows that the actual CPL-implementation is equal to two Feynman
gates, where one gate swaps the values (A and B) and the other gate swaps
the complemented values (A and B) both depending on the control (C and C).
That the values and complemented values can be calculated independently is
not a complete surprise. The Fredkin gate is parity preserving and the trick of
using dual-line values is, thus, not necessary, but we still have and compute to
both complementary lines such that they can be used in the next gate.

The layout of the Fredkin gate does not, however, precisely mirror a double-
Feynman gate (see Fig. 15 for an abstract layout). Instead of having 2 x 4
transistors on a single row, the transistors have been arranged in two rows
by moving one transistor of each type. This reduces the necessary area usage
but also makes routing of the wires more complicated. The layout of the gate is
shown in Fig. 16. The width of the gate is 20 um, so compared with the Feynman
gate (that has a width of 10.5 um) the area reduction is not impressive, which
is actually due to the more complicated routing. At each side of the Fredkin
gate about 3 um is needed for inputs/outputs and to route the wires, which can
be compared to the about 1.5 um for the Feynman gate.

In total only 12 um of the 20 pwm wide cell is used for transistors. It is
expected that the reversible gates will use more ‘real estage’ compared to a
static CMOS gate in order to implement a similar functionality, and using only
half of the area for transistors does not help the area overhead. In Sec. 3.5 we
will discuss how this might be improved.

12

Figure 16: CMOS layout of the Fredkin gate.

13

<z Az AR |2 VZAI<

VzZzz7AQ VzZA <
I~ Zzz2722)|

Lo |

[© |
z NZZZZZad ~— AZd i
x VZZzZ21 _ ZZA g
I S | £
m S A Z AN |QPZZA ZZAI< 8
o | © | 3
o

Figure 17: Abstract layout of the Toffoli gate.

3.4 The Toffoli Gate

In contrast to the Fredkin gate, the schematics of the Toffoli gate (Fig. 8) shows
that this gate is more complicated than the Feynman gate. Twice, it contains
two pass-gates in parallel and two pass-gates in serial. This is obvious in the
abstract layout (Fig. 17), where, for example, the two parallel pMOS transistors
are shown on the left and right side (which uses two rows) and the serial pMOS
transistors are shown in the middle. Notice, that it is possible to put two wires
of polysilicon between the diffusion and, thus, reduce the total circuit area.

The layout of the Toffoli gate is shown in Fig. 18 and is only 16 pum wide.
This is actually a very compact design, although, like the Fredkin gate, each
side of the cell adds almost 3 um to route the pins.

3.5 Towards Computer Aided Design

The standard cells presented here were designed for use in “hand-made” layouts,
but are still based on ideas from CAD methods. Work with the cells has,
however, shown that it is possible to further improve the layouts. In this section
we will discuss some future design approaches.

3.5.1 Number of Gates

The general design idea was to mirror the diagram notation in the gate layouts,
such that the inputs are on one side and the outputs in the other side. All signals
would then flow from the left to the right. A plan, which followed directly from
the diagrams, was that extra gates should be designed where the inputs (and
outputs) were permuted and/or negated. This would result in a large set of
gates, but would make routing much easier: In many cases it could just be
placing one gate beside the next.

The problem is that actual logic implementations [28, 30] have shown that
this rarely occurs. Often, one of the outputs is used with other signals (e.g. in

14

Figure 18: CMOS layout of the Toffoli gate.

15

a ripple) and space between the cells is, thus, needed.

Also, CMOS technology develop so fast that a new technologi is introduced
every 2 to 4 years and each time all the gates must be redrawn in this new
technology. Fach foundry even has its own design rules, so changing from
one foundry to another (using the same transistor size) is likely to incur some
changes to the gate layouts. One logic family of asynchronous logic also uses
complementary dual-lines and here they use this to their advantage by im-
plementing all 2- and 3-input gates [18, 17], which is only two 2-input gates
(logic-and and xor) and also very few 3-input gates. The rest of the gates can
be implemented by negating inputs and/or outputs, which is a simple line swap
in a dual-line technology.

Taking this strategy even further, it is not even necessary to have an im-
plementation of the Fredkin gate, as we know that it is implemented with two
Feynman gates. The exact number of needed gates should be investigated.

3.5.2 Input/Output Placement and Gate Size

A practical experience from designing the gates as similar to the diagrams, was
also that the cells use a lot of overhead space. Both the Fredkin and the Toffoli
gate have on each side between 2.5 pm and 3 um of wiring before the transistors
are placed. The best way to remove this is to follow the strategy from static
CMOS standard cell and place the pins inside the cells.

This brings us directly to a second problem, namely that all pins are placed
in metal layer 1. The reversible gates are functionally more advanced than
conventional logic gates, which is shown by the use of metal layer 2 for routing
inside the standard cell; something that is not much used in static CMOS gates.
All pins should instead be placed in metal layer 2 (or perhaps 3) and metal layer
1 (and perhaps also metal 2) should not be used for routing between the gates
at all (only inside the gate). This will reduce the number of metal layers that
can be used for automatic routing, but will not cause any problem, as modern
chips have at least 9 metal layers, and routing between the reversible gates is
expected to be easier than for conventional gates.

3.5.3 Transistor Placement ands Gate Size

In the previous section, we discussed how to reduce the cell area by moving the
pins. Another way to reduce the area is to optimize the transistor placement.
In the Feynman gate all the transistors are placed on only one row, so we will
here look at some alternative designs that can improve this.

The Fredkin gate (and the Toffoli gate) have enough space to fit two rows of
transistors (Figs. 16 and 18). And in the Fredkin gate (that is implemented as
two Feynman gates) the first step was made by moving one of the transistors.
It is, however, possible to place the pMOS and nMOS transistors in a 2 x
2 grid as shown in Fig. 19 and, thereby, reduce the used area even further.
This does, however, make the routing of the gate signals, A and A, to the
transistors more complicated. The biggest problem with this design is perhaps
that the transistors connected to @) has been divided into two parts: The pMOS
transistors at the top and nMOS transistors at the bottom of the cell.

A solution to this problem is shown in Fig. 20. Here the n-well (and pMOS
transistors) have been divided into two parts (at the top and bottom) and the

16

pMOS transistors pMOS transistors

— NN NN
Q B|N|Q|N|B
N—N
N—N Al |a £
_ — [}
SEE AL | 2
N N _ S
4| |4 E E Z.
Al |a Al (4] | g
N E 2 E
- @ @ - A A
nMOS transistors pMOS transistors
Figure 19: Alternative abstract lay- Figure 20: Second alternative ab-
out of the Feynman gate. stract layout of the Feynman gate.

nMOS transistors are placed in the middle. Now the transistors connected to
both @ and @ placed together, while the gate signal to the trasistors (4 and A)
have similar routing. The only problem could be that the rail for V5 now must
run through the middle of the cell. As these gates have not yet been drawn in
actual layout it is unknown if this will work. It is likely that we also have to
use metal layer 3 for routing.

4 Implementation and Fabrication of an ALU

In the following we will show how the reversible standard cells have been used
to implement a reversible arithmetic logic unit (ALU). This includes pictures of
both the schematic and actual layout. The resulting layout have been fabricated
and the functionality of the chip has been tested.

The ALU is a central part of a programmable processor [29]; given some
control signal, it performs an arithmetic or logical operation on it inputs. In
a conventional ALU design the arithmetic-logic operations are all performed in
parallel, after which a multiplexer chooses the desired result. All other results
are discarded. This is not desirable for a reversible circuit, because of the
number of garbage bits this would require.

Instead, the design implements the recent reversible ALU design presented
in [30]. This ALU follows a strategy that puts all operations in sequence and
then uses the controls to ensure that only the desired operation changes the
input. The reversible ALU is based on the V-shaped (forward and backward
ripple) reversible binary adder designed by Vedral et al. [34] and later improved
in [8, 32, 28].

17

Figure 21: Schematic of the reversible ALU. This schematic is used for simula-
tion and to verify the layout with respect to connections, transistors, and logic
gates.

4.1 The Schematic

The ALU design from [30] can have an arbitrary size, but for practical reasons
we want the chip to be packaged in a dual in-line (DIL) device package with
48 legs, which is the largest DIL package size available. Our implementation
has, therefore, been limited to a 4-bit input width. The ALU is implemented
using bit-slices so all interesting design choices are shown at this size and there
is, therefore, no need to make the implementation more advanced.

A 4-bit input width schematic is shown in Fig. 21. This schematic follows the
design from [30] and it is possible, in this figure, to follow the V-shaped forward
and backward ripples. The design consists of 12 Feynman gates, 6 Fredkin gates
and 4 Toffoli gates.

4.2 The Layout

The ALU has a very regular structure, so it is beneficial to divide the layout into
two different types of bit-slices. The first is used for the n—1 (3 in this example)
least significant bits and implements the entire functionality using six gates. The
second bit-slices is only used for the most significant bit and implements a small
optimization (using two gates less) that is also used in binary adder design.
The layout of the ALU is shown in Fig. 22, where the bit-slice for the most
significant bit is to the left. Around the gates (bit-slices) is placed a power ring
that enables easy and efficient distribution of the V4 and V. The shole layout
including the power ring has a size of 113 um x 72 pwm. In total this is 8136
um? or about 0.008 mm?.

The main purpose of the schematic is, in a simple way, to describe the
functionality of the circuit, which then is used to verify the layout; also called
a layout vs. chematic (LVS) check. More specific, each gate (green box) in
Fig. 21 is first expanded with its transistor implementation to give a detailed
connection diagram. Then transistors are inferred from the layout, and labeled
inputs and outputs are matched to verify that the schematic and layout are
identical. The gate-schematics also include metrics like transistor width and
length These informations are also verified against the layout in the VLS check.

18

Figure 22: Layout of the reversible 4-bit ALU. Inputs (in the forward direction)
are connected at the bottom (with least significant to the left) and the outputs
can be read at the top. The five control-lines can be connected at the sides;
four at the left side and one at the right side.

19

Figure 23: Photograph of the fabricated ALU chip.

4.3 The Pad Ring and Device Package

After the ALU layout has been made, a pad ring is added, which is necessary if
one will actually use the chip. Its main purpose is to enable easy connection to
the device package, but at the same time it also protects the logic circuit against
overload by e.g. static charge. The ring consists only of predefined elements and
defines the physical size of the fabricated circuit. The layout including the pad
ring is shown in Fig. 24 where the layout shown in Fig. 22 only fills the small
green rectangular in the center of the figure. Also, a picture of the fabricated
and packaged circuit is shown in Fig. 23. The whole ALU including the pad
ring is 2094.1 pm x 1371,7 uwm or 2.87 mm?; compare this to 0.008 mm? for
the designed circuit.

4.4 Design Rule Check

The result of the design rule check on the layout for the ALU, including the pad
ring, (shown in Fig. 25) reveals seven different types of violations; some of them
relates to more than hundred places in the layout. The violations are explained
below, but none of them cause problems for the fabrication of the circuit.

e wtopmetal3_aMETALS5 and ... METAL4: These violations is caused
by the pad ring. The chosen layout was defined to have a maximum of 3
metal layers, which was enough for this ALU design, but the pad ring also
uses metal layers 4 and 5. The fabrication process supports up to 7 metal
layers

e END_1: This violation refers to a special “edge of die” box that can
be set to improve the result of automatic dummy metal and polysilicon
placement. This box is not necessary and, therefore, not added in this
layout, thus, resulting in this error.

Dummy metal and polysilicon is automatically added to the layout to im-
prove the lithography masks and reduce errors in the fabrication process.
In modern technologies, where lithography masks are very sensitive to lay-
out changes, advanced algorithms for placing dummy metal is used. In
the technology we use this is not the case and more simple approaches,
like just adding dummy metal in empty area, are used.

20

Figure 24: Layout of ALU with pad ring. The actual 4-bit ALU is contained in
the small green both in the center of the figure.

21

- Calibre - DRC RVE : drc_results.db

Eile Wiew Highlight Tools Setup Help
= ~ <« H »C W Z M

Topcell revalu : 338 Results {in ¥ of ¥ Checks)]

B & Cell revalu - 388 Results]

X Check wiopmetal3_aMETALS - 114 Results
& & Check wiopmetald_aMETALS - 115 Results
[® Check EMD_1 - 155 Results

& Check POLY&_min - 1 Result

[® Check MTL3A_max- 1 Result

[® Check MTL4A_max - 1 Result

& Check MTLSA_max- 1 Result

Cell revalu : 383 Results

Figure 25: Design rule check for entire ALU chip design. The resulting seven
different violations were expected and does not cause problems in the fabrica-
tion.

e POLYA min: On all 1 mm? squares at least 5 % (and at most 60 %)
must be covered by polysilicon. In our case we only use a small part of
the chip and the rule is not violated if we only check the ALU circuit. We
do, therefore, not have to do anything about it, but the normal solution
is to add (unused) dummy polysilicon in the empty areas.

¢ MTL3A _max to MTL5A _max: After dummy metal has been added
at most 60 % (and at least 20 %) of the area must be covered by metal
at each layer. The errors here relate to metal layers 3 through 5, and as
we use very little or none in the ALU layout it is easy to conclude that
the error of too much metal comes from the naive algorithm for placing
dummy metal. After the layout have been send to manufacturing better
algorithm will be applied that solves this and, thus, these errors does not
cause problems.

5 Design of Reversible Circuits using Standard
Cells and Functional Programming

The layouts of the reversible designs presented in this report and, to the authors
knowledge, in all other literature have been implemented by hand. In Sec. 3.5
we started the process towards computer aided design by looking at standard
cells of reversible gates. In this section we will look even further upwards in
design chain and see how a recently proposed functional programming language
can be used to aid implementating these circuits.

22

5.1 Current CAD Approaches to Reversible Logic

The first approach to computer aid in reversible logic designs were based on logic
synthesis. It is not always easy to determine a good realization of a reversible
circuit, for example, with respect to the number of garbage bits or transistor
costs. In conventional logic, logic synthesis has been used for many years to find
a good implementation for a given circuit definition. These methods can not be
directly transferred to reversible logic, so redesigning these algorithms or even
completely new synthesis algorithms for reversible circuits have attracted much
attention [26, 19, 33, 20, 36]. Given a logic specification (e.g. as a logic table
or a binary decision diagram), a reversible circuit is synthesized using a fixed
library of basic reversible gates.

The first reversible design language is SyReC [37] and is based on the syntax
of a reversible imperative language Janus [38]. A design is directly synthesized
to logic through a number of steps that includes loop unrolling and transla-
tion of each statement and expression. This synthesis is, however, not always
garbage free. Some translations (e.g. expression evaluation) will always gener-
ate garbage.

Both of these approaches target a flat netlist or diagram of reversible gates.
This is not a problem for smaller circuits, but they lose the structure that was
provided by the user. This information could be very useful in the placement
of the standard cells.

5.2 A Combinator Description Language

A recent design language is a (point-free) combinator-style functional language
and is designed to be close to the reversible logic gate-level [27]. The combina-
tors, however, include high-level constructs such as ripples, conditionals, and,
as it is a language to describe reversible circuits, a novel construct for inversion.
The language is inspired by uFP [25], which is based on FP [3], but extended
with memory with feedback loop. We will not describe the language in detail
here (for those that are interested we refer to [27]), but only explain the com-
binators that are needed to design the ALU that was presented in the previous
section.

The reversible gates are defined as atoms in the language and named Not,
Feyn, Fred, and Toff. Subscripts on the gates denotes that the inputs are per-
muted and outputs are inverse permuted. The identity gate, Id, is also added as
an atom. The basic ways to combine atoms is by a serial composition (written
as f;g) or a parallel composition (written as [f,g]). We can then define an

23

arbitrary-sized ALU as follows:

rdn = Feyngs gy ;Feynys gy s Fred s 4 51 (1)

rup = Fred(4513 Toff (1,463 ; Feynyo 6y (2)
group = [Split,, Split,] (3)
interface = [Id, Concat; Zip| (4)
alu = interface; ()

N(group;rdn;{1,2,3,5,4,6}; group™);
/(group;{1,2,3,5,4,6};rup; group™);
interface™*

The first two equations, (1) and (2), are the two subpart that together make
a bit-slice. These are the only logic gates in the definition. The next two
equations, (3) and (4), are added to make the interface of the different construct
match. There is, thus, no functionality in this, but can give suggestions to the
routing. Split and Concat are grouping and ungrouping of wires, while Zip
performs a merge of two arbitrary-sized input busses. The final equation, (5),
implement the two ripples that is needed. Here, we use the inversion combinator
with the grouping definition.

A feature of combinator languages is that they have a solid mathematical
definition and algebraic laws that relate different combinators can be defined and
proven. Using these relations in a clever way, it is possible to use term rewriting
to optimize the circuit descriptions. A simple version of this technique have
already been used for reversible circuit in what is called template matching [20].
Here the idea is to perform local optimizations by defining a large set of identity
circuits and then match a subpart of the identity circuits with subparts of the
circuit to be optimized. When the matched subpart of the circuit is larger than
the rest of the identity circuit, the smaller subpart can be used instead without
changing the functionality of the circuit. For the combinator language laws
for the higher-level constructs (ripples etc.) also exist and, thus, it gives more
possibilities for rewriting.

5.3 Combinators and Standard Cells

The combinator language is designed to be close to the logic gate level; atoms
in the combinator language mirror the reversible standard cells. A translation
to a netlist of reversible logic gates or other low-level descriptions would, there-
fore, be fairly straightforward and the translation would include flattening or
unrolling, when specializing the circuit to a given input size. This approach
will, however, suffer from the same problems as the previous reversible com-
puter aided design approaches. We would end with a flat structure and then
have to do place and route one each gate.

A better strategy is to keep and exploit the structure and information that
already is in the combinator language. For example, the language contains
combinators for downwards (\\g) and upwards ripples (/f) and these are the
exact same structures that is used to implement the reversible ALU. In Sec. 4
we saw how a compact (and regular) implementation could be made by having
each bit-slice in a separate row. By keeping the knowledge that we have a ripple,
we can, therefore, easily make a good implementation of these circuits.

24

This can also be exploited when optimizing the circuit with term rewriting.
Mostly we think of optimizations as reducing the number of gates or the circuit
delay, but in this case it would also allow to improve the placement of cells (and
to some extend routing) by finding more regular structures. When making the
term rewriting system, we need to explicitly define priority and metric for the
different algebraic laws. So if we can find a metric for improving the placement,
it might be useful, but this is left as future work.

6 Conclusion

In this technical report, we have shown standard cell layouts for the basic set
of reversible gates. The cells were designed to mirror the widely used diagram
notation (left-to-right flow) for gates with up to three inputs. The cells were im-
plemented in 0.35 pm CMOS using complementary pass-transistor logic. These
cells are first prototype cells and knowledge for future improvements for CAD
approaches have been gained from this work. At the heart of these improve-
ments is to move the pins inside the cells.

As an example, the standard cells has been used to implement a (4-bit)
reversible arithmetic logic unit. The circuit was fabricated, but before this,
correctness of the layout were verified with simulations, design rule check, and
layout vs. schematic check. After fabrication the resulting chip were tested for
functional correctness.

The main purpose for using standard cells is to make computer aided de-
signs much easier. We have here advocated to use a recent combinator-based
reversible functional language and argued why this approach will be favorable
over current approaches when it comes to circuits design. But much work is
still needed in this area to know the benefits and drawbacks of the different
approaches and even more work to have a complete working design flow.

It would also be desirable to have measurements of the fabricated chips that
shows that the resulting chip did indeed use less energy than a conventional
digital CMOS design, but this has not been the aim of this work. Better mea-
surement equipment and a different chip design would be needed for this.

Acknowledgement

The author thanks Alexis De Vos and Stéphane Burignat for introducing this
reversible logic family hand help with the chip fabrication. I also thank Robert
Gliick and Holger Bock Axelsen for discussions about this work. Finally, the
author thanks the Danish Council for Strategic Research for the support of this
work in the framework of the MicroPower research project.
(http://topps.diku.dk/micropower)

References

[1] W.C. Athas and L. J. Svensson. Reversible logic issues in adiabatic CMOS.
In Workshop on Physics and Computation, PhysComp 94, Proceedings,
pages 111-118. IEEE, 1994.

25

2]

[12]

[13]

[14]

[15]

[16]

H. B. Axelsen and R. Gliick. What do reversible programs compute? In
M. Hofmann, editor, Foundations of Software Science and Computational
Structures, volume 6604 of LNCS, pages 42-56. Springer-Verlag, 2011.

J. Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM,
21(8):613-641, 1978.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for
quantum computation. Physical Review A, 52(5):3457-3467, 1995.

C. H. Bennett. Logical reversibility of computation. IBM Journal of Re-
search and Development, 17(6):525-532, 1973.

A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and
E. Lutz. Experimental verification of Landauer’s principle linking informa-
tion and thermodynamics. Nature, 483(7388):187-189, 2012.

J. I. Cirac, L. Duan, and P. Zoller. Quantum optical implementation of
quantum information processing. In F. De Martini and C. Monroe, editors,
Experimental Quantum Computation and Information, Proceedings of the
International School of Physics Enrico Fermi, pages 148-190. IOS Press,
2002.

S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. A new
quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1, 2005.

R. Cuykendall and D. R. Andersen. Reversible optical computing circuits.
Optics Letter, 12(7):542-544, 1987.

A. De Vos. Reversible computing. Progress in Quantum FElectronics,
23(1):1-49, 1999.

A. De Vos and Y. Van Rentergem. Reversible computing: from mathemati-
cal group theory to electronical circuit experiment. In Computing Frontiers
Proceeding, pages 35-44. ACM Press, 2005.

R. P. Feynman. Quantum mechanical computers. Optics News, 11:11-20,
1985.

M. P. Frank. Common mistakes in adiabatic logic design and how to avoid
them. In H. Arabnia and L. Yang, editors, Proceedings of the International
Conference on Embedded Systems and Applications. ESA’03, pages 216—
222. CSREA Press, 2003.

E. Fredkin and T. Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21(3-4):219-253, 1982.

J. Koller and W. Athas. Adiabatic switching, low energy computing, and
the physics of storing and erasing information. In Workshop on Physics
and Computation, PhysComp ’92, Proceedings, pages 267270, 1992.

R. Landauer. Irreversibility and heat generation in the computing process.
IBM Journal of Research and Development, 5(3):183-191, 1961.

26

[17]

[18]

[19]

[20]

[21]

A. Lines. Pipelined asynchronous circuits. Technical Report
CaltechCSTR:1998.cs-tr-95-21, California Institute of Technology, 1998.

A. Lines. Asynchronous interconnect for synchronous SoC design. IFEE
Micro, 24(1):32-41, 2004.

D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(11):1497-1509, 2004.

D. Maslov, G. W. Dueck, and D. M. Miller. Synthesis of Fredkin-Toffoli
reversible networks. IEEFE Transactions on Very Large Scale Integration
(VLSI) Systems, 13(6):765-769, 2005.

C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley,
second edition, 1980.

R. C. Merkle. Reversible electronic logic using switches. Nanotechnology,
4(1):21-40, 1993.

M. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

P. Patra and D. S. Fussell. A framework for conservative and delay-
insensitive computing. Technical report, 1996.

M. Sheeran. muFP, a language for VLSI design. In Proceedings of the 1984
ACM Symposium on LISP and functional programming, LFP 84, pages
104-112. ACM, 1984.

V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of
reversible logic circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 22(6):710-722, 2003.

M. K. Thomsen. Describing and optimizing reversible logic using a func-
tional language. In A. Gill and J. Hage, editors, Implementation and Appli-
cation of Functional Languages, 23rd International Workshop, IFL 2012.
LNCS, 2012. To appear.

M. K. Thomsen and H. B. Axelsen. Parallelization of reversible ripple-carry
adders. Parallel Processing Letters, 19(1):205-222, 2009.

M. K. Thomsen, H. B. Axelsen, and R. Gliick. A reversible processor
architecture and its reversible logic design. In A. De Vos and R. Wille,
editors, Reversible Computation, RC 2011. Revised Selected Papers, volume
7165 of LNCS, pages 30-42. Springer-Verlag, 2012.

M. K. Thomsen, R. Gliick, and H. B. Axelsen. Reversible arithmetic logic
unit for quantum arithmetic. Journal of Physics A: Mathematical and
Theoretical, 43(38):382002, 2010.

T. Toffoli. Reversible computing. In J. W. de Bakker and J. van Leeuwen,
editors, ICALP, volume 85 of LNCS, pages 632—644. Springer-Verlag, 1980.

27

[32]

[33]

[34]

[35]

Y. Van Rentergem and A. De Vos. Optimal design of a reversible full adder.
International Journal of Unconventional Computing, 1(4):339-355, 2005.

Y. Van Rentergem and A. De Vos. Synthesis and optimization of reversible
circuits. In Reed-Muller, editor, Proceedings of the Reed-Muller Workshop
2007, pages 67-75, 2007.

V. Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary
arithmetic operations. Physical Review A, 54(1):147-153, 1996.

N. H. E. Weste and D. Harris. CMOS VLSI Design : a circuit and system
perspective. Addison-Wesley, Pearson Edication, third edition, 2005.

R. Wille and R. Drechsler. Towards a Design Flow for Reversible Logic.
Springer Science, 2010.

R. Wille, S. Offermann, and R. Drechsler. SyReC: A programming language
for synthesis of reversible circuits. In Specification € Design Languages,
FDL 2010. Forum on, pages 1-6. IET, 2010.

T. Yokoyama and R. Gliick. A reversible programming language and its in-
vertible self-interpreter. In Partial Fvaluation and Program Manipulation.
Proceedings, pages 144-153. ACM Press, 2007.

28

