
Combining Region Inference and Generational
Garbage Collection

Martin Elsman

Department of Computer Science

University of Copenhagen

Denmark

mael@di.ku.dk

Niels Hallenberg

SimCorp A/S

Denmark

niels.hallenberg@simcorp.com

Abstract
We present a region-based memory management scheme

with support for generational garbage collection. The scheme

is implemented in the MLKit Standard ML compiler, which

features a compile-time region inference algorithm. The com-

piler generates native x64 machine code and deploys region

types at runtime to avoid write barrier problems and to

support partly tag-free garbage collection. We measure the

characteristics of the scheme, for a number of benchmarks,

and compare it to the Mlton state-of-the-art Standard ML

compiler and configurations of the MLKit with and with-

out region inference and generational garbage collection

enabled. Although region inference often serves the purpose

of generations, we demonstrate that, in some cases, genera-

tional garbage collection combined with region inference is

beneficial.

CCSConcepts • Software and its engineering→Garbage
collection; Functional languages; Runtime environments;

Keywords Region Inference, Garbage Collection, Memory

Management

1 Introduction
Region-based memory management allows for programmers

to associate the life-times of objects with so-called regions

and to reason about how andwhen such regions are allocated

and deallocated. Region-based memory management, as it is

implemented for instance in Rust [2], can be a valuable tool

for constructing critical systems, such as real-time embedded

systems [28]. Region inference differs from explicit region-

based memory management by taking a non-annotated pro-

gram as input and producing as output a region-annotated

program, including directives for allocating and deallocating

regions [31]. The result is a programming paradigm where

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

DIKU Technical Report 2019/01, November, 2019
ISSN 0107-8283

© 2019 Copyright held by the owner/author(s).

programmers can learn to write region-friendly code (by

following certain patterns [32]) for essential parts of a pro-

gram and perhaps retain to a combination of region inference

and garbage collection [22] for programs (or the parts of a

program) that are not time critical.

Both region inference and generational garbage collection

have been shown to manage short-lived values well. We

present a framework that combines region inference and

generational garbage collection, and discuss the effects of

the integration.

The region-based memory management scheme that we

consider is based on the stack discipline. Whenever e is some

expression, region inference may decide to replace e with
the term letregion ρ in e ′ end, where e ′ is the result of

transforming the expression e , which includes annotating

allocating expressions with particular region variables (e.g.,

ρ) specifying the region each value should be stored in. The

semantics of the letregion term is first to allocate a region

(initially an empty list of pages) on the region stack, bind

the region to the region variable ρ, evaluate e ′, and, finally,
deallocate the region bound to ρ (and its pages). The region

type system allows regions to be passed to functions at run

time (i.e., functions can be region-polymorphic) and to be

captured in closures. The soundness of region inference en-

sures that a region is not deallocated as long as a value within

it may be used by the remainder of the computation. When

combining region inference and reference-tracing garbage

collection, to remedy for the sometimes overly static ap-

proximation of liveness, we must be careful to rule out the

possibility of deallocating regions with incoming pointers

from live objects. Luckily, it turns out that such pointers can

be ruled out by the region type system [11], which means

that we can be sure that a tracing garbage collector will not

be chasing dangling pointers at run time.

The generational collector associates two generationswith

each region. It has the feature that an object is promoted to

the old generation of its region (during a collection) only if it

has survived a previous collection. Compared to the earlier

non-generational collection technique [22], we may run a

minor collection by only traversing (and copying) objects in

the young generations.

1

DIKU Technical Report 2019/01, November, 2019 Martin Elsman and Niels Hallenberg

We demonstrate that generations and regions are essen-

tially orthogonal concepts by showing empirically that, for

a variety of test programs, the following properties hold:

1. Generational garbage collection decreases memory

management time overhead compared to not using

generations (both with and without region support)

2. Region basedmemorymanagement decreases memory

management time overhead compared to not using

region based memory management (both with and

without generational garbage collection).

In particular, the combination of generational garbage col-

lection and region-based memory management is superior

to previous attempts at garbage collecting regions (in overall

running time). But moreover, region-based memory manage-

ment will also, in many cases, decrease the pressure on the

generational collector.

1.1 Contributions
The contributions of this work are the following:

1. We present a technique for combining region-based

memory management with a generational (stop the

world) garbage collector, using a notion of typed re-

gions [10], which allows us to deal with mutable data

in minor collections and for tag-free representations

of certain kinds of values such as tuples.

2. To demonstrate the absolute feasibility of the tech-

nique, we show empirically that the MLKit generates

code that, in many cases, is comparable in perfor-

mance to executables generated with the Mlton com-

piler (v20180207). The two compilers are very different,

however, and sometimes Mlton is many times faster

than MLKit, which may be due to Mlton’s very drastic

inlining strategy or more efficient instruction selec-

tion.

3. We demonstrate empirically that the combination of

generational garbage collection and region-basedmem-

ory management can lead to improved performance

over using non-generational garbage collection but

also that the increased memory waste (unused mem-

ory in region pages), caused by having multiple gener-

ations associated with each region, sometimes leads

to an overhead compared to when a non-generational

collection strategy is used.

4. We demonstrate empirically that when combined with

generational garbage collection, region inference will

take care of reclaiming most of the data in young gen-

erations with the effect that minor collections occur

less often.

The study is performed in the context of the MLKit [32].

It generates native x64 machine code for Linux and macOS

[13] and implements a number of techniques for refining the

representations of regions [4, 31], including dividing regions

L

fp
o

ao

fp
y

ay

p

дo

дy

Figure 1. A region descriptor on the down-growing stack.

Region descriptors are linked, through “previous pointers”

(p), hold generation descriptors (дy and дo), and hold a linked
list of large objects (L).

into stack allocated (bounded) regions and regions that are

unbounded and therefore heap allocated.

1.2 Outline
The report is organised as follows. In Section 2, we present

the generational garbage collection algorithm and we show

how the algorithm is extended to work with mutable and

large objects. In Section 3, we present a number of experi-

mental results. In Section 4, we describe related work, and

in Section 5, we conclude.

2 Generational Garbage Collection
A region descriptor represents an unbounded region and con-

sists of a pointer to the previous region descriptor on the

stack (p), a generation descriptor for the young generation

(дy), a generation descriptor for the old generation (дo), and
a list (L) for large objects, which are objects that do not fit

in a region page; see Figure 1. Each generation descriptor
(д) consists of a pointer to a list of fixed-sized region pages

(fp) and an allocation pointer (a). Objects that do not fit in a

region page are allocated in the separate list of large objects,

associated with the region; see Section 2.5.

The garbage collector we describe is a generational collec-
tor, which supports both minor and major collections. In a

minor collection, only reachable objects allocated in young

generations are traversed and evacuated (i.e., copied); those

allocated in old generations are left untouched. In a major
collection, all reachable objects are traversed and evacuated.

In a minor collection, only reachable objects allocated in

young generations are traversed, but a minor collection does

not differentiate between in which region an object is stored,

as there can be pointers from objects in newer regions to

objects in older regions.

Consider a region r2 above a region r1 on the stack, with

two generations each. This scenario allows for deep pointers

from r2 pointing to objects in region r1 as shown in Figure 2

(labeled 1 to 4) and shallow pointers pointing from objects

allocated in region r1 into objects allocated in region r2 (la-
beled 5 to 8). Shallow pointers only exist between regions

allocated in the same letregion construct, which is a suf-

ficient requirement to rule out the possibility of dangling

2

Combining Region Inference and Generational Garbage Collection DIKU Technical Report 2019/01, November, 2019

1

2

3

4

5

6

7

8

r1 fp
y

fp
o

r2 fp
y

fp
o

Figure 2. Possible and impossible pointers. Impossible point-

ers are those that are dashed. The stack grows downwards.

Shallow pointers (e.g., pointers from values in r1 to values in
r2) are allowed only between regions that are allocated and

deallocated simultaneously (e.g., a list’s elements are stored

independently from the spine of the list.)

pointers [11, 22]. The scheme does not allow for pointers to

point from an old generation to a young generation (i.e., the

pointers labeled 3 and 7).

When an object in a young generation of a region is evacu-

ated, the object may be promoted to the old generation of the

region. The collector implements the following promotion

strategy, which guarantees that only long-living values are

promoted to old generations:

Definition 2.1 (Promotion Strategy). Promote objects when

they have survived precisely one collection. The first time a

value in a region r is evacuated, the value stays allocated in

the young generation. During the following garbage collec-

tion, the value is promoted (moved) to the old generation of

r .

During a minor garbage collection, objects that have sur-

vived one collection must be promoted to the old genera-

tion, whereas objects that have not yet survived a collec-

tion should remain in the young generation. However, the

implementation must preserve a generation upward-closure
property, which states that, after a collection, whenever a

value v has been promoted to an old generation, all values

v ′
pointed to by v are also residing in old generations.

Figure 3 shows two regions and their young generations.

The black areas contain objects that have survived one collec-
tion. The white areas signify objects that have been allocated

since the last collection. Objects allocated in the black areas

will be promoted to an old generation and objects allocated

in the white area will stay allocated in a young generation.

Figure 3 shows different combinations of pointers fromwhite

and black areas into white and black areas.

To implement the promotion strategy, the generation upward-

closure invariant must disallow values in black areas to point

at values in white areas (pointers 5 and 6 in Figure 3):

Definition 2.2 (Generation Upward-Closure). If a value re-

sides in an old generation and points to a value v ′
then v ′

resides in an old generation. If a value resides in a black area

1

2

3

4

5 6

r1 fp
y

fp
o

r2 fp
y

fp
o

Figure 3. The black areas contain objects that have survived

one collection and white areas contain objects allocated since

the last collection.

in a young generation and points to a valuev ′
thenv ′

resides

in an old generation or in a black area in a young generation.

We now argue that the promotion strategy satisfies the

Generation Upward-Closure invariant. The argument is a

case-by-case analysis of the possible pointers shown in Fig-

ure 3 (pointers 1, 2, 3, and 4), where each pointer takes the

form v2 → v1 and where v2 is allocated in r2 and v1 is allo-
cated in r1:

Pointer 1. Both v2 and v1 reside in black areas, which

means that, givenv2 is live, they will both be promoted

to old generations according to the promotion strat-

egy. The possibly promoted pointer will thus trivially

satisfy Definition 2.2, part 1.

Pointer 2. If v2 is live then it will be promoted to the

black area of the young generation while v1 is pro-
moted to the old generation. The possibly promoted

pointer will trivially satisfy Definition 2.2, part 2.

Pointer 3. Bothv2 andv1 reside in white areas of young

generations, which means that, given v2 is live, they
will both be promoted to black areas in young gen-

erations. Again, the possibly promoted pointer will

trivially satisfy Definition 2.2, part 2.

Pointer 4. Similar to pointer 3.

Pointer 3 gives rise to some considerations because v1
is allocated in a region page containing both a black and a

white area. How do we mark v1 as being allocated in a white

area? One possibility is that we mark each object as being

white or black, which will require that all objects are stored

with a tag. A less costful solution, which we shall pursue, is to

introduce the notion of a region page color pointer (colorPtr),
which points at the first white value in the region page.

Given a value v located at a position p in a region page

and the color pointer colorPtr associated with the region

page, if p < colorPtr then v is allocated in the black area

of the region page; otherwise, v is allocated in the white

area.
1
Notice, that color pointers are updated and referenced

1
In the implementation, the color pointer associated with a region page is

located in the header of the page. If colorPtr points past the page, the entire
page is black.

3

DIKU Technical Report 2019/01, November, 2019 Martin Elsman and Niels Hallenberg

only during a garbage collection; it does not change when

allocating new values.

For the scheme to be sound, we need to make sure that

pointers of the form of pointer 5 and pointer 6 never occur

as the promotion strategy would otherwise lead to pointers

from old generations to young generations, which would vi-

olate Definition 2.2. As we have shown, the garbage collector

will never introduce such pointers and, luckily, neither will

the mutator, except due to mutable data assignment, which

we will treat in Section 2.5.

One alternative to the implemented promotion strategy

would be to add additional generations and let a minor collec-

tion traverse all objects except those in an oldest generation.

Such a solution, however, could introduce an unnecessary

amount of unused memory in region pages. Another promo-

tion strategy would be to promote objects when they have

survived a number (N ≥ 0) of collections. This strategy is a

generalization of the implemented promotion strategy, but is

intractable because objects allocated in a young generation

may have survived a different number of collections. An

implementation must therefore record the number of times

each object in a young generation has survived a collection

(either by tagging each object or by tagging region pages and

by allocating objects in different region pages depending on

the number of times the object has survived a collection).

2.1 Evacuating Objects
The evacuation process copies live objects into fresh pages

so that the copied-from pages can be reclaimed, including

the parts of the pages that hold unreachable values. Defini-

tion 2.2 is implemented as follows. During a major collection,

the collector will evacuate objects from old generations into

old generations. During a minor collection, however, old

generations will be left untouched and the collector will not

attempt at traversing values stored in old generation pages.

During a major or a minor collection, the collector will evac-

uate objects in young generation white areas into young

generation black areas. Moreover, the collector will evacuate

objects in young generation black areas into old generations.

The evacuation strategy is implemented by marking all re-

gion pages in old generations black, which means that the

same algorithm can be used to evacuate objects in minor and

major collections. All objects in black areas are copied into

black areas in old generations. All objects in white areas are

copied into black areas in young generations. All objects al-

located between two collections are allocated in white areas

in young generations. Before a major collection, all region

pages are assembled to form the from-space as shown in

Figure 4.

2.2 Tagging and Representation of Values
To distinguish pointers from non-pointers, integers and other

unboxed values (e.g., booleans and enumeration datatypes)

are represented as tagged values with the least significant

old old
young young young

Figure 4. From-space contains black region pages from old

generations, black region pages from young generations,

white region pages from young generations, and partly-white

region pages from young generations. No white region pages

from old generations exist.

slsb lsb possible interpretation

01 11 Integer (2*i+1) or nullary constructor for

unboxed datatype.

00 Pointer to boxed value (pair, record, func-

tion closure, . . .)

00 Unary constructor for unboxed datatype

(e.g., :: for lists).
10 Second unary constructor for unboxed

datatype.

00 Forward pointer if address points to a

value in a to-space region page (during

garbage collection).

Figure 5. Possible interpretations for second-least signifi-
cant bit (slsb) and least significant bit (lsb) in value pointers.

bit set; see Figure 5. Records are represented as a vector of

values with a prefix tag word, which is used by the collec-

tor to identify the number of record components. Pairs and

triples, however, are represented without a prefix tag word.

Given a pointer to a value in a region page, the collector can

determine that the value is a pair or a triple by inspecting the

region type associated with the region in which the object

resides. Such a scheme is possible because the mutator does

not need to inspect the number of elements in a tuple [8].

In practice, the implementation works with the region

types rty_bot, rty_pair, rty_triple, rty_double, rty_ref,

rty_array, and rty_top. Here the region type rty_top is

used for specifying regions that can contain values of ar-

bitrary type, except those associated with the other region

types. The region type rty_bot never occurs at run time,

but is used for specifying type and region polymorphic func-

tions. The region unification algorithm will fail to unify two

regions with different types (except if one of the region types

is rty_bot), which provides the guarantee that values stored

in a region at run time are classified according to the region

type of the region. For efficiency, the region type for a re-

gion is stored both in the generation descriptor for the old

generation and in the generation descriptor for the young

generation.

2.3 The GC Algorithm
The GC algorithm makes use of a series of auxiliary utility

functions:

4

Combining Region Inference and Generational Garbage Collection DIKU Technical Report 2019/01, November, 2019

• in_oldgen_and_minor(p): Returns true if the col-

lection is a minor collection and p points to an object

in a region page for which the old-generation bit is set.

Returns false otherwise.

• is_int(p): Returns true if the least-significant bit in
p is set. Returns false otherwise.

• tag_is_fwd_ptr(w): Returns true if the tag word w
is the reserved forward pointer tag, which is different

from other tags used for tagged objects. Returns false

otherwise.

• is_pairregion(r): Returns true if the runtime type

associated with the region descriptor r is region_pair.
Returns false otherwise.

• in_tospace(p): Returns true if p points to an ob-

ject in a region page for which the to-space bit is set.

Returns false otherwise.

• acopy_pair(r,p): Allocates a pair in the region asso-

ciated with the region descriptor r and copies into the

newly allocated memory the two pointers (or integers)

contained in the pair pointed to by p.
• obj_sz(w): Returns the size of the object in words,

given its tag word.

• gendesc(p): Returns the generation descriptor for the

generation in which the object pointed to by p resides.

Each region page in the generation has associated with

it a generation pointer, pointing at the generation de-

scriptor for the generation. Generation pointers are

installed when a new region page is associated with a

generation.

• push_scanstack(a): Pushes the allocation pointer a
onto the scan stack.

• pop_scanstack(): Pops and returns the top scan pointer
from the scan stack. Returns null if the scan stack is

empty.

• target_gen(g,p): Returns a generation gt according
to the following rules:

1. If g is an old generation, then gt is an old generation.

2. If g is a young generation and p appears in a black

area in g then gt is an old generation.

3. If g is a young generation and p appears in a white

area in g then gt is a young generation.

A central part of the GC algorithm is the function evacuate,
which, essentially, copies live values under consideration

from from-space into to-space. The function is shown in

Figure 6. It takes a pointer p and copies the value pointed to

into to-space provided it is not already copied and that it is

a prospect (i.e., under a minor collection, values in old gen-

erations are not copied.) For brevity, only pairs are treated

specially; the implementation also treats regions of type

rty_triple and rty_ref specially, as also triples and refer-

ences are represented unboxed.

Another central function is the cheney function, which

takes care of scanning the values that have been copied

void* evacuate(void* p) {

if (is_int(p) ||

in_oldgen_and_minor(p)) {

return p;

}

g = gendesc(p);

gt = target_gen(g,p);

if (is_pairregion(g)) {

if (in_tospace (*(p+1))) {

return *(p+1); // fwd -ptr

}

a = acopy_pair(gt,p);

*(p+1) = a; // set fwd -ptr

} else {

if (tag_is_fwd_ptr (*p)) {

return *p;

}

a = acopy(gt,p);

*p = a; // set fwd -ptr

}

if (gt->status == NONE) {

gt->status = SOME;

push_scanstack(a);

}

return a;

}

Figure 6. The function evacuate assumes that the argument

p points to an object and that it perhaps resides in from-space

and needs to be copied to to-space. After copying, a forward-

pointer is installed.

into to-space. During scanning, the cheney function may

call evacuate on values that have themselves not yet been

copied, which may cause an update to the generation alloca-

tion pointer. Once, for all regions, the scan-pointer reaches

the allocation pointer, the collection terminates. The cheney
function is shown in Figure 7. Notice, again, that special

treatment is required for dealing with untagged values (only

the case for pairs is shown.)

The main GC function, called gc is shown in Figure 8. It

evacuates all values in the root set and continues by calling

the cheney function on all values on the scan stack; notice

that the evacuate function pushes values that have been

copied to to-space onto the scan stack for further processing.

2.4 When is Garbage Collection Run
To determines whether a minor or a major collection is run, a

so-called heap-to-live ratio is maintained, which by default is

set to 3.0. Whenever the size of the free-list of pages becomes

less than 1/3 of the total region heap, garbage collection is

5

DIKU Technical Report 2019/01, November, 2019 Martin Elsman and Niels Hallenberg

void cheney(void* s) {

g = gendesc(s);

if (is_pairregion(g)) {

while (s+1 != g->a) {

(s+1) = evacuate ((s+1));

(s+2) = evacuate ((s+2));

s = next_pair(s,g);

}

} else {

while (s != g->a) {

for (i=1; i<obj_sz (*s); i++)

(s+i) = evacuate ((s+i));

s = next_value(s,g);

}

}

g->status = NONE;

}

Figure 7. The function cheney assumes that the argument

scan pointer s points to a value that has already been copied

to to-space but for which the components have not yet been

evacuated. The function is named cheney because it degener-
ates to Cheney’s algorithm if multi-generations are disabled.

void gc(void** rootset) {

while (p = next_root(rootset)) {

*p = evacuate (*p);

}

while (p = pop_scanstack ()) {

cheney(p);

}

}

Figure 8. ThemainGC function evacuates each of the values

in the root set after which the cheney function is called with

scan pointers from the scan stack as long as there are scan

pointers on the stack.

initiated upon the next function entry (i.e., safe point). After

each collection, it is ensured that the number of allocated

region pages is at least 3.0 times the size of to-space (given

the heap-to-live ratio is 3.0). The following rules are deployed

for switching between major and minor collections, allowing

an arbitrary number of minor collections between two major

collections:

1. If the current collection is a major collection, the next

collection will be a minor collection. The region heap

is enlarged to satisfy the heap-to-live ratio.

2. If the current collection is a minor collection and the

heap-to-live ratio is not satisfied after the collection,

the next collection will be a major collection.

2.5 Mutable Objects and Large Objects
In the presence of mutable objects, the generation upward

closure invariant may be violated during program evaluation.

In particular, a reference cell (which are rare in a functional

language) residing in an old generation, may be assigned to

point at a value residing in a young generation. We refine

the generation upward-closure condition as follows:

Definition 2.3 (Refined Generation Upward-Closure). For

all values v , if v is non-mutable and resides in an old gener-

ation then for all values v ′
pointed to from v , v ′

resides in

an old generation.

The refined generation upward-closure invariant is safe, if

each minor collection traverses all reachable mutable values

(even those that reside in old generations). For minor collec-

tions we extend the root set to contain, not only live values

on the stack, but also all references and tables allocated. How

does the collector locate all references and tables? Simply by

arranging that such values are stored in regions with distin-

guished region types. During a minor collection, the region

stack is traversed and objects in regions of type rty_ref and

rty_array are traversed. Thus, we avoid the implementa-

tion of the usual “remembered set” of mutable values that

have been updated since the previous collection.

2.6 Large Objects
Concerning the treatment of large objects, there are several

options. In the implementation, we are currently treating

large objects without associating with being either young

or old. Large objects are kept in one list associated with a

region descriptor. Following this strategy, large objects are

not associated with a particular generation (nor need they be

associated with a color) and may therefore only be deleted

during major collections. However, large objects should be

traversed (not copied), when reached, both during major and

minor collections.

Two alternatives would be to have two lists of large objects,

one for each of the two generations, or one list where each

object is annotated with generation information.

3 Experimental Results
In this section, we describe a series of experiments that serve

to demonstrate the relationship between region inference,

non-generational garbage collection, and the generational

garbage collection algorithm presented in Section 2.

The experiments are performed with MLKit version 4.4.1

and Mlton v20180207. MLKit version 4.4.1 generates native

x64machine code, which is also the case for Mlton v20180207.

The two compilers are very different. Whereas Mlton is a

whole-program highly-optimising compiler, MLKit features

6

Combining Region Inference and Generational Garbage Collection DIKU Technical Report 2019/01, November, 2019

a smart-recompilation system that allows for quick rebuilds

upon modification of source code [9, 12].

In Section 3.1, we establish a baseline for the measure-

ments and compare the performance of Mlton to the per-

formance of MLKit (without garbage collection and with

non-generational garbage collection). In Section 3.2, we de-

scribe the effect on performance of enabling generational

garbage collection. In Section 3.4, we present the effect of

generational collection and region inference on unused mem-

ory (region waste).

All benchmark programs are executed on a MacBook Pro

(15-inch, 2016) with a 2.7GHz Intel Core i7 processor and

16GB of memory running macOS. Times reported are wall

clock times and memory usage is measured using the macOS

/usr/bin/time program. Measurements are averages over

10 runs. We usem to specify memory usage (resident set size)

and t to specify wall clock execution time (in seconds). Sub-

scripts describe the mode of the compiler, with ∗r signifying

region inference enabled, ∗g signifying garbage collection

enabled, and ∗G signifying generational garbage collection

enabled. Thus, trG specifies wall clock execution time with re-

gion inference and generational garbage collection enabled.

We usemmlton and tmlton to signify memory usage and wall

clock execution time for executables running code gener-

ated by Mlton. The benchmark programs span from micro-

benchmarks such as fib37 and tak (7 and 12 lines), which

only use the runtime stack for allocation, to larger programs,

such as vliw and mlyacc (3676 and 7353 lines), that solve

real-world problems. The program msort-rf has been made

region-friendly by the programmer.

The benchmark programs are listed in Figure 9. The Lines
column shows the size of each benchmark.

By disabling region inference, we understand instruct-

ing the region inference algorithm to allocate all values

that would be allocated in infinite regions in global regions

(collapsed according to their region type). Then not a sin-

gle infinite region is deallocated at run time and the non-

generational garbage collection algorithm essentially reduces

to Cheney’s algorithm. Disabling region inference in this

sense does not change the property that many values are

allocated in finite regions on the stack.

3.1 Comparison with Mlton
In this section, we present base numbers for running the

benchmark programs using the MLKit compiler with region

inference and non-generational garbage collection enabled.

Figure 10 shows wall clock time for MLKit generated executa-

bles relative to wall clock time for Mlton (version v20180207)

generated executables. We see that for some of the programs,

Mlton outperforms the MLKit (with and without garbage col-

lection enabled). Mlton’s whole-program compilation strat-

egy, efficient IO-operations, and optimised instruction se-

lection for the x64 architecture, are good candidates for an

explanation. Raw numbers for the configurations are shown

Program Lines Description
kbc 684 Knuth-Bendix completion

simple 1053 Spherical fluid-dynamics program

mandelbrot 74 Mandelbrot set computation

life 208 The game of life

msort 119 Sorting 1,000,000 integers

msort-rf 119 Region-friendly sorting

mpuz 142 Emacs M-x mpuz puzzle

barnes-hut 1230 N-body simulation

logic 346 Unification algorithm

DLX 2841 DLX RISC instruction simulation

professor 282 Solves puzzle by exhaustive search

lexgen 1321 Lexer generation

tsp 493 Traveling salesman problem

vliw 3676 VLIW instruction scheduler

mlyacc 7353 Parser generation

zebra 303 Solves the Zebra puzzle

ratio 619 Image analysis

fib37 7 The Fibonacci micro-benchmark

tak 12 The Tak micro-benchmark

Figure 9. The benchmark programs span from small micro-

benchmarks such as fib37 and tak, which only use the

runtime stack for allocation, to larger programs, such as

vliw and mlyacc, that solve real-world problems. The Lines
column shows the size of each benchmark. The program

msort-rf has beenmade region-friendly by the programmer.

in Figure 11, which also shows memory usage for the dif-

ferent configurations. Even though the performance of all

but one benchmark is better with region inference alone, for

some of the benchmark programs (i.e., those with numbers

marked in bold in Figure 11), region inference alone does

not suffice to obtain good memory performance.

3.2 Generational Garbage Collection
Measurements showing the effect of non-generational and

generational garbage collection in concert with region in-

ference is shown in Figure 12. First, notice that region infer-

ence has a positive influence or no effect on performance

in all but one of the benchmarks, namely the Knuth-Bendix

completion program, for which region inference adds an

excessive number of region parameters to the main mutually

recursive functions (explaining the slowdown). Second, gen-

erational garbage collection alone (without region inference)

performs better than or equivalent to (in all but one case)

non-generational garbage collection (the red line). Finally, for

six or seven of the benchmarks, the combination of region in-

ference and generational garbage collection performs better

than the combination of non-generational garbage collection

and region inference. The results are arguably quite sensitive

7

DIKU Technical Report 2019/01, November, 2019 Martin Elsman and Niels Hallenberg

kb
c

si
m

pl
e

m
an

de
lb

ro
t

lif
e

m
so

rt

m
so

rt
-r
f

m
pu

z

ba
rn

es
-h

ut
lo
gi
c

D
LX

pr
of

es
so

r

le
xg

en ts
p

vl
iw

m
ly
ac

c

ze
br

a

ra
ti
o

fib
37 ta

k

0

1

2

3

4

5

6

7

8
2
.1

5 2
.6

6

0
.9

0
.9

9

2
.3

6
2
.5

1
.6

7
2
.0

4

0
.7

6 1
.4

1

0
.8

7
1
.2

6

2
.5

9 3
.2

8

6
.1

2
7
.5

3

4
.8

6
.6

7

0
.3

8
0
.4

6

1
.7

6
1
.4

4 1
.9

3 2
.6

7

1
.5

8
1
.8

3

1
.7

6
2
.1

8

1
.0

7
1
.2

9

4
.2

8 4
.9

8 5
.6

4
5
.9

3

1
.2

1
.1

8 1
.8

1
1
.8

4

RI GC+RI

Figure 10. Wall clock execution times for MLKit generated executables relative to execution times for Mlton generated

executables (the dashed red base line). The orange (left) bars show measurements for MLKit with only region inference enabled.

The yellow (right) bars show measurements for when both garbage collection and region inference is enabled.

Program tmlton tr trg mmlton mr mrg

kbc 0.10 0.22 0.28 2.5M 6.9M 3.4M

simple 0.26 0.24 0.26 6.4M 2.6M 3.4M

mandelbrot 0.09 0.22 0.24 978K 1.4M 1.6M

life 0.54 0.91 1.11 2.6M 14M 1.6M

msort 1.09 0.83 1.53 427M 410M 137M

msort-rf 0.81 0.70 1.03 652M 102M 124M

mpuz 0.34 0.88 1.11 950K 1.2M 1.3M

barnes-hut 0.14 0.85 1.05 2.2M 284M 2.4M

logic 0.11 0.54 0.75 2.4M 276M 2.4M

DLX 0.51 0.19 0.23 33M 6.7M 6.9M

professor 0.37 0.66 0.54 1.6M 10M 1.4M

lexgen 0.21 0.41 0.57 18M 50M 8.1M

tsp 0.14 0.22 0.25 11M 8.3M 13M

vliw 0.05 0.09 0.11 8.4M 9.7M 4.6M

mlyacc 0.19 0.20 0.24 7.0M 66M 6.6M

zebra 0.51 2.18 2.54 1.6M 132M 1.3M

ratio 0.35 1.98 2.08 50M 38M 10M

fib37 0.32 0.38 0.38 937K 1.1M 1.1M

tak 0.68 1.23 1.26 938K 1.1M 1.1M

Figure 11. Wall clock execution times and maximal resi-

dent memory usage for Mlton generated executables and for

MLKit generated executables with only region inference en-

abled and with both region inference and non-generational

garbage collection enabled (averages of 10 runs).

to the heap-to-live ratio (a fair comparison should perhaps al-

low the combination of generational garbage collection and

region inference to work with a higher heap-to-live ratio).

Figure 13 shows the garbage collection counts (crg, crG,
cg, and cG) for the different configurations. Notice that the
garbage collection counts (and times) are smaller when re-

gion inference is enabled. Notice also that the percentage

of memory reclaimed by the garbage collector is (close to)

invariant to whether the garbage collector is generational or

not.

3.3 Region Profiling
The MLKit features a region profiling tool [21], which makes

it possible to get an overview of how a programmakes use of

regions over time. Figure 14 shows region profiles of MLYacc

computations for four different runtime configurations of the

MLKit compiler. The top-left region profile shows the mem-

ory usage over time for a configuration with region inference

enabled and reference tracing garbage collection disabled

(denoted r). The top-right region profile shows the memory

usage for a configuration where non-generational garbage

collection is combined with region inference (denoted rg).
The two bottom region profiles show the memory usage for

configurations with generational garbage collection enabled.

The configuration for the bottom-left region profile com-

bines generational garbage collection with region inference

(denoted rG) whereas the configuration for the bottom-right

region profile is using generational collection only (denoted

G). The example demonstrates that the combination of gener-

ational garbage collection and region inference often requires

more memory than when region inference is combined with

non-generational garbage collection, but also, that the pro-

file obtained alone with generational garbage collection is

similar to the profile obtained with region inference and

non-generational garbage collection enabled.

3.4 Memory Waste
Region inference combined with generational garbage col-

lection results in more memory waste (unused memory in

region pages) than when combined with non-generational

garbage collection (up to 17 percentage points more). The

8

Combining Region Inference and Generational Garbage Collection DIKU Technical Report 2019/01, November, 2019

kb
c

si
m

pl
e

m
an

de
lb

ro
t

lif
e

m
so

rt

m
so

rt
-r
f

m
pu

z

ba
rn

es
-h

ut
lo
gi
c

D
LX

pr
of

es
so

r

le
xg

en ts
p

vl
iw

m
ly
ac

c

ze
br

a

ra
ti
o

fib
37 ta

k

0

0.5

1

1.5

1
.3

9
1
.5

8
1
.0

2

0
.6

4
0
.6

7
0
.9

7

1
.0

2 1 1

0
.9

9 1 1

0
.9

0
.9

3
0
.9

3

0
.5

6
0
.5

9
0
.9

1

0
.9

8
0
.9

5
0
.9

9

0
.9

4
0
.8

9
0
.7

7

1
0
.9

0
.9

3

0
.6

7
0
.6

9
1
.3

8

0
.9

8
1
.0

2
0
.9

4

0
.9

2
0
.8

6
0
.8

3

0
.8

8
0
.8

8 1
.0

4

0
.6

9
0
.7

3
0
.7

5 0
.8

7
0
.8 0
.8

8

0
.9

6
0
.9

3
1
.0

2

0
.9

3
0
.9

3
0
.9

9 1 1
1
.0

1 1 1 1

GC+RI GENGC+RI GENGC

Figure 12. Wall clock execution times for different configurations of MLKit generated executables relative to execution times

for executables with only non-generational garbage collection enabled (the red dashed base line). The green (left) bars show

measurements for a configuration of MLKit with region inference and non-generational garbage collection. The blue (middle)

bars show measurements for when both region inference and generational garbage collection is enabled. The violet (right)

bars show measurements for when only generational garbage collection is enabled.

Program crg дrg(ms) prg crG дrG(ms) prG cg дg(ms) cG дG(ms)

kbc 40 5.9 43% 32 (11) 4.9 (1.8) 42% 204 12.6 245 (35) 16.3 (2.2)

simple 7 2.8 7% 10 (5) 3.3 (1.8) 4% 17 8.7 23 (11) 8.7 (5.4)

mandelbrot 1 0.1 0% 1 (0) 0.2 (0.0) 0% 1 0.1 1 (0) 0.1 (0.0)

life 142 6.4 17% 121 (8) 5.4 (0.5) 16% 677 25.4 880 (139) 28.3 (6.8)

msort 33 718.7 53% 47 (23) 762.7 (491.3) 59% 41 1001.1 55 (26) 894.3 (584.0

msort-rf 23 179.3 6% 35 (17) 270.5 (161.6) 8% 42 1050.2 56 (27) 936.9 (640.9

mpuz 2 0.3 2% 2 (1) 0.1 (0.0) 2% 2 0.2 2 (1) 0.2 (0.0)

barnes-hut 1948 315.3 63% 1545 (414) 214.0 (79.4) 63% 4272 638.3 4243 (870) 400.4 (143.8)

logic 2276 350.2 100% 2571 (348) 289.7 (55.1) 100% 2306 367.2 2478 (316) 299.3 (54.0)

DLX 5 2.3 0% 6 (3) 3.9 (1.6) 0% 104 119.5 204 (102) 245.8 (109.5)

professor 1218 20.7 27% 1065 (14) 16.0 (0.3) 27% 9821 148.9 8503 (103) 94.3 (2.6)

lexgen 254 148.1 80% 241 (41) 96.4 (25.3) 79% 451 251.6 479 (80) 155.7 (47.1)

tsp 12 16.5 5% 17 (8) 21.3 (7.7) 6% 19 60.5 29 (14) 79.0 (40.9)

vliw 23 8.3 13% 24 (10) 7.5 (3.3) 13% 214 77.6 221 (40) 42.0 (14.4)

mlyacc 115 61.8 69% 88 (18) 36.3 (9.6) 61% 211 104.5 239 (67) 75.0 (35.3)

zebra 5008 90.6 57% 3010 (337) 65.4 (8.4) 56% 17357 274.4 23023 (1001) 310.2 (19.1)

ratio 34 49.2 23% 37 (8) 62.5 (13.8) 22% 110 194.4 99 (13) 180.1 (17.7)

fib37 1 0.1 0% 1 (0) 0.1 (0.0) 0% 1 0.1 1 (0) 0.1 (0.0)

tak 1 0.1 0% 1 (0) 0.1 (0.0) 0% 1 0.1 1 (0) 0.1 (0.0)

Figure 13. Garbage collection counts (c∗) and garbage collection times (д∗) for the different configurations. Reported counts are
the total number of collections with the number of major collections and the accumulated major collection time in parentheses.

The p∗ columns show the percentage of bytes reclaimed by garbage collection (in contrast to region inference).

reason is that, with generational garbage collection, each

infinite region contains two lists of region pages (one list for

each generation), each of which may not be fully utilised.

Figure 15 gives memory waste percentages for the configu-

rationswrg (region inference and non-generational garbage

collection),wrG (region inference and generational garbage

collection), wg (non-generational garbage collection), and

wG (generational garbage collection). As expected, the waste

is high for the region inference configurations. We also see

that generational garbage collection combined with region

inference gives rise to the highest degree of waste.

9

DIKU Technical Report 2019/01, November, 2019 Martin Elsman and Niels Hallenberg

conf: r - Region profiling Fri Mar 8 16:37:22 2019

OTHER

r177715inf

r232612inf

r213151inf

r232613inf

r232614inf

r205326inf

r206071inf

r212998inf

r229267inf

r229266inf

r205172inf

r205050inf

r230769inf

r229270inf

stack

r8inf

r4inf

r1inf

r5inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6

by
te

s

0M

4M

9M

14M

19M

24M

Maximum allocated bytes in regions (28853852) and on stack (385616)

conf: rg - Region profiling Fri Mar 8 16:49:33 2019

OTHER

r166539fin

r166538fin

r268792inf

r166644fin

r269701inf

r202287fin

r166441fin

r269693inf

r269694inf

r266347inf

r8inf

r266346inf

r269695inf

r266350inf

r4inf

r269720inf

r5inf

stack

r1inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5

by
te

s

0K

200K

400K

600K

800K

Maximum allocated bytes in regions (672048) and on stack (359324)

conf: rG - Region profiling Fri Mar 8 16:34:19 2019

OTHER

r267849inf

r166539fin

r166538fin

r269701inf

r268792inf

r166644fin

r166441fin

r269693inf

r269694inf

r269695inf

r8inf

r266347inf

r266346inf

r269720inf

r266350inf

r4inf

stack

r1inf

r5inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5

by
te

s

0K

200K

400K

600K

800K

1000K

1200K

Maximum allocated bytes in regions (1011688) and on stack (400316)

conf: G - Region profiling Fri Mar 8 16:35:31 2019

OTHER

r270643fin

r266366fin

r269652fin

r269714fin

r206635fin

rDesc

r202270fin

r7inf

r6inf

r202287fin

r166538fin

r166539fin

r166644fin

r166441fin

r4inf

r8inf

stack

r1inf

r5inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5

by
te

s

0K

200K

400K

600K

800K

Maximum allocated bytes in regions (693528) and on stack (434996)

Figure 14. Region profiles of MLYacc computations for four different runtime configurations.

4 Related Work
Most related to this work is the previous work on combining

region inference and garbage collection in the MLKit [22].

Compared to the earlier work, the present work investigates

how generational garbage collection can be combined with

region inference and how the concept of typed regions [10]

can be used to implement a generation write barrier. There

is a large body of related work concerning general garbage

collection techniques [24] and garbage collection techniques

for functional languages, including [7, 20, 23, 33].

Incremental, concurrent, and real-time garbage collection

techniques for functional languages have recently obtained

much attention. In particular, the presence of generations

has shown useful for collecting parts of the heap incremen-

tally and in a concurrent and parallel fashion [3, 26, 27]. We

leave it to future work to investigate the use of regions and

generations in the MLKit for supporting concurrency and

parallelism in the language.

A particular body of related work investigates the notion

of escape analysis for improving stack allocation in garbage

collected systems [5, 29]. Region inference and MLKit’s poly-

morphic multiplicity analysis [4] allow more objects to be

stack allocated than traditional escape analyses, which al-

lows only local, non-escaping values to be stack allocated.

Other work investigates the use of static prediction tech-

niques and linear typing for inferring heap space usage [25].

Cyclone [30] is a region-based type-safe C dialect, for

which, the programmer can decide if an object should reside

in the GC heap or in a region. Another region-based lan-

guage is Gay and Aiken’s RC system, which features limited

explicit regions for C, combined with reference counting of

regions [19]. A modern language for system programming

is Rust, which is based on ownership types for managing

and controlling the use of resources, including memory for

storing objects [2]. Ownership types are also used for real-

time implementations of Java [6]. None of the above systems

are combined with techniques for automatic generational

garbage collection.

Also related to the present work is the work by Aiken et

al. [1], who show how region inference may be improved

for some programs by removing the constraints of the stack

discipline, which may cause a garbage collector to run less

often.

10

Combining Region Inference and Generational Garbage Collection DIKU Technical Report 2019/01, November, 2019

wrg wrG wg wG

Program (%) (%) (%) (%)

kbc 42 57 4 8

simple 13 30 2 6

mandelbrot 0 0 0 0

life 8 17 4 9

msort 2 5 2 4

msort-rf 3 6 2 4

mpuz 69 82 47 65

barnes-hut 10 18 2 5

logic 3 6 3 6

DLX 23 32 1 2

professor 25 38 10 17

lexgen 10 18 1 2

tsp 7 12 5 7

vliw 13 28 1 3

mlyacc 8 21 1 2

zebra 31 38 10 22

ratio 5 7 1 2

fib37 0 0 0 0

tak 0 0 0 0

Figure 15. Memory waste. The numbers show the average

percentage of region waste (unused memory in region pages)

measured at each collection.

Finally, another body of related work is on using region

inference without combining it with a reference-tracing

garbage collector. Such work include the use of region infer-

ence as the primary memory management scheme for a web

server [14, 15, 16, 17, 18].

5 Conclusion and Future Work
We have presented a technique for combining region in-

ference and generational garbage collection in a functional

language. Whereas generational collection by itself is shown

(in most cases) to be beneficial compared to a simple Cheney-

style non-generational reference tracing collector, when gen-

erational collection is combined with region inference, it

turns out that region inference will take care of reclaiming

much of the memory that generational garbage collection

would otherwise reclaim. There are, however, potential ben-

efits of a generational collector, which, as we have seen, in a

few cases also leads to improved performance.

As a first obvious candidate for future work, the x64 code

generator can be improved to generate more efficient code.

We speculate that some of the inefficiencies that we see in

the comparison to Mlton (i.e., Figure 10), are due to ineffi-

cient instruction selections. Second, an area of future work is

to investigate the possibility of combining region inference

and, perhaps, generations, with features for concurrency

and parallelism. Third, it would be interesting to investi-

gate the possibility for making programmers express region

properties in the source language.

References
[1] Alexander Aiken, Manuel Fähndrich, and Raph Levien. 1995. Better

Static Memory Management: Improving Region-Based Analysis of

Higher-Order Languages. In ACM Conference on Programming Lan-
guages and Implementation (PLDI ’95).

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002.

Alias Annotations for Program Understanding. In ACM Conference on
Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’02).

[3] Todd A. Anderson. 2010. Optimizations in a Private Nursery-based

Garbage Collector. In ACM International Symposium on Memory Man-
agement (ISMM ’10).

[4] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. 1996. From Region

Inference to von Neumann Machines via Region Representation In-

ference. In ACM Symposium on Principles of Programming Languages
(POPL ’96).

[5] Bruno Blanchet. 1998. Escape Analysis : Correctness Proof, Implemen-

tation and Experimental Results. In ACM Symposium on Principles of
Programming Languages (POPL’98). ACM Press, 25–37.

[6] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and

Martin Rinard. 2003. Ownership Types for Safe Region-based Memory

Management in Real-time Java. In ACM Conference on Programming
Language Design and Implementation (PLDI ’03).

[7] Damien Doligez and Xavier Leroy. 1993. A Concurrent, Generational

Garbage Collector for a Multithreaded Implementation of ML. In ACM
Symposium on Principles of Programming Languages (POPL ’93).

[8] Martin Elsman. 1998. Polymorphic Equality—No Tags Required. In

Second International Workshop on Types in Compilation.
[9] Martin Elsman. 1999. Static Interpretation of Modules. In Procedings of

Fourth International Conference on Functional Programming (ICFP’99).
ACM Press, 208–219.

[10] Martin Elsman. 2002. Typed Regions for Tag-Free Garbage Collection.
Technical Report. IT University of Copenhagen, Denmark.

[11] Martin Elsman. 2003. Garbage Collection Safety for Region-based

Memory Management. In ACMWorkshop on Types in Language Design
and Implementation (TLDI ’03).

[12] Martin Elsman. 2008. A Framework for Cut-Off Incremental Recompila-
tion and Inter-Module Optimization. Technical Report. IT University

of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Den-

mark.

[13] Martin Elsman and Niels Hallenberg. 1995. An Optimizing Backend for

the ML Kit Using a Stack of Regions. Student Project 95-7-8, University

of Copenhagen (DIKU).

[14] Martin Elsman and Niels Hallenberg. 2002. A Region-Based Abstract
Machine for the ML Kit. Technical Report TR-2002-18. Royal Veteri-
nary and Agricultural University of Denmark and IT University of

Copenhagen. IT University Technical Report Series.

[15] Martin Elsman and Niels Hallenberg. 2002. SMLserver—A Functional
Approach to Web Publishing. The IT University of Copenhagen. (154

pages). Available via http://www.smlserver.org.
[16] Martin Elsman and Niels Hallenberg. 2003. Web Programming with

SMLserver. In International Symposium on Practical Aspects of Declar-
ative Languages (PADL’03). Springer-Verlag.

[17] Martin Elsman and Ken Friis Larsen. 2004. Typing XHTML Web

Applications in ML. In International Symposium on Practical Aspects of
Declarative Languages (PADL’04). Springer-Verlag.

[18] Martin Elsman, Philip Munksgaard, and Ken Friis Larsen. 2018. Expe-

rience Report: Type-Safe Multi-Tier Programming with Standard ML

Modules. In Proceedings of the ML Family Workshop (ML ’18).
[19] David Gay and Alexander Aiken. 2001. Language Support for Regions.

In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’01). ACM Press, Snowbird, Utah.

11

DIKU Technical Report 2019/01, November, 2019 Martin Elsman and Niels Hallenberg

[20] John H. Reppy. 1994. A High-performance Garbage Collector for

Standard ML. (01 1994). Technical report.

[21] Niels Hallenberg. 1996. A Region Profiler for a Standard ML compiler

based on Region Inference. Student Project 96-5-7, Department of

Computer Science, University of Copenhagen (DIKU).

[22] Niels Hallenberg, Martin Elsman, and Mads Tofte. 2002. Combining

Region Inference and Garbage Collection. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI’02). ACM Press.

Berlin, Germany.

[23] Lorenz Huelsbergen and Phil Winterbottom. 1998. Very Concurrent

Mark-&Amp;-sweep Garbage Collection Without Fine-grain Synchro-

nization. In ACM International Symposium on Memory Management
(ISMM ’98).

[24] Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage
Collection Handbook: The Art of Automatic Memory Management. Chap-
man & Hall/CRC.

[25] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hof-

mann. 2010. Static Determination of Quantitative Resource Usage for

Higher-order Programs. In ACM Symposium on Principles of Program-
ming Languages (POPL ’10).

[26] Simon Marlow and Simon Peyton Jones. 2011. Multicore Garbage

Collection with Local Heaps. In ACM International Symposium on
Memory Management (ISMM ’11).

[27] Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime

Support for Multicore Haskell. In ACM International Conference on
Functional Programming (ICFP ’09).

[28] Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, and Ser-

gio Yovine. 2006. Efficient Region-Based Memory Management for

Resource-limited Real-Time Embedded Systems.. In Workshop on Im-
plementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems.

[29] G. Salagnac, S. Yovine, and D. Garbervetsky. 2005. Fast Escape Analysis

for Region-based Memory Management. Electron. Notes Th. C. S. 131
(May 2005), 99–110.

[30] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and

Trevor Jim. 2006. Safe Manual Memory Management in Cyclone. Sci.
Comput. Program. 62, 2 (Oct. 2006), 122–144.

[31] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004.

A Retrospective on Region-Based Memory Management. Higher-Order
and Symbolic Computation 17, 3 (01 Sep 2004), 245–265.

[32] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,

Tommy Højfeld Olesen, and Peter Sestoft. 2006. Programming with
Regions in the MLKit (Revised for Version 4.3.0). Technical Report. IT
University of Copenhagen, Denmark.

[33] Katsuhiro Ueno and Atsushi Ohori. 2016. A Fully Concurrent Garbage

Collector for Functional Programs on Multicore Processors. In ACM
International Conference on Functional Programming (ICFP ’16).

12

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Generational Garbage Collection
	2.1 Evacuating Objects
	2.2 Tagging and Representation of Values
	2.3 The GC Algorithm
	2.4 When is Garbage Collection Run
	2.5 Mutable Objects and Large Objects
	2.6 Large Objects

	3 Experimental Results
	3.1 Comparison with Mlton
	3.2 Generational Garbage Collection
	3.3 Region Profiling
	3.4 Memory Waste

	4 Related Work
	5 Conclusion and Future Work
	References

