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1 Introduction

Suppose we need to proof-read a large piece of text. After a little while, we
begin to notice a few recurring mistakes:

• The text frequently mentions the former Libyan ruler Muammar Gaddafi,
but spells his name inconsistently: for example, by spelling it “Moam-
mar Qadafi”, or one of the many other possible variations due to the
ambiguity of Arabic romanization [1].

• The text contains several numerals, but arbitrarily switches between us-
ing comma and dot as a decimal mark (the symbol separating the deci-
mal part from the fractional part of a number). For example, switching
between the two styles “123,5” and “123.5”.

We would like to correct the text such that it uses a single spelling of
“Muammar Gaddafi”, and to use “.” as a decimal mark, which is the usual
convention in written English.

Manually going through the manuscript to correct all occurrences of the
above mistakes can be a labor-intensive task, depending on the size of the
text. If we are using a text editor with search/replace features, we might be
able to replace all occurrences of “Qadafi” with “Gaddafi”. But, since that is
just one out of more than a hundred possible spellings [1], replacing them all
would require many applications of the search/replace procedure. Finding
and fixing all occurrences of “,” used as a decimal mark is even more work,
as we only want to replace the commas that occur as part of a numeral, and
not those that occur as a grammatical separator of text clauses.

Fortunately, regular expressions can be used to solve the above problems.
A regular expression can be seen as a formal description of a set of strings
satisfying certain criteria. For example, we might write a regular expression
which describes the set of all strings that begins with one of the letters “Q”,
“K” or “G”, followed by either “adafi” or “addafi”. This already describes 6
different ways of spelling “Gaddafi”, including the one that we consider to
be correct. If our text editor supported search/replace by regular expressions
instead of just constant strings, we can ask it to replace all substrings that
are matched by our Gaddafi-expression with the string “Gaddafi” – but now
six variations are corrected at once, saving us from a lot of work.

Even though regular expressions are not expressive enough to describe
all sets of strings in the universe, they still cover a lot of practical use cases
similar to the ones mentioned above. Additionally, they have some appealing
theoretical properties that leads to very efficient software implementations.
In the following section, we will describe them in more detail.
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2 Regular Expressions

The notion of regular expressions arose from the field of theoretical computer
science, and was first described in 1956 by Stephen Cole Kleene [11] in his
work on finite automata theory. The ubiquitous interpretation of regular ex-
pressions is as patterns denoting (possibly infinite) sets of strings. Under this
interpretation, we can formulate the problem of determining whether a given
string is contained in the underlying set specified by some regular expres-
sion. This generalizes the simpler string matching problem of determining
whether a specific string occurs as a substring in a larger text. Concrete text
search implementations emerged a relatively long while after Kleene’s intro-
duction, with one of the earliest appearances being Thompson’s description
of a text search algorithm based on regular expressions from 1968 [18]. The
motivation for using regular expressions for simple text search is that they
are computationally weak enough to provide strong guarantees of efficient
running time and memory use, which is not the case for more expressive
formalisms such as context free grammars [5].

Regular expressions are now well-known among programmers and power-
users, and have found use in many applications such as text editing, lexical
analysis in compilers and scripting. Popular implementations include UNIX
tools such as sed, grep and awk, text editors such as emacs, and some pro-
gramming languages even include them as first-class constructions (Perl [19]
being a notable example, although not the only one). What these implemen-
tations have in common is that they all implement the traditional regular
expressions of Kleene, although some choose to add extensions, yielding
a much more expressive (and thus computationally much more complex)
formalism. A notable example is again Perl which adds back-references [8],
making the matching problem NP-complete! Additionally, the various im-
plementations have slightly different conventions for the external syntax,
mostly with regard to escaping. To avoid confusion when talking about reg-
ular expressions, we will therefore not talk about a specific implementation,
but instead use a more mathematical notation.

Definition 1. We say that E is a regular expression (RE) if either:

1. E is an atomic expression, consisting of a single letter a from some set of
letters Σ, or the special symbol 1 which does not occur in Σ.

2. Given REs E1 and E2, E is a compound expression of the form E1 + E2,
E1E2, or E?

1 .1

1These compound expressions are often written E|F, EF, E* in actual software implemen-
tations, where E and F are regular expressions.
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The set Σ, called an alphabet, is assumed to be a finite set of “letters”,
which varies depending on our application. For example, for text search in a
document encoded using ASCII [2], Σ will be defined as the set of printable
characters in the ASCII table. We will sometimes add parentheses to REs to
make their meaning unambiguous: to distinguish parentheses from letters,
we will write all literal letters underlined with a typewriter font.

Given an RE E, we want to be able to talk about the set of strings that
it represents, the so-called language of E, denoted by L(E). L(·) can simply
be thought of as a function sending a regular expression to its interpreta-
tion as a set of strings. For the atomic expressions, the interpretation is
straightforward:

L(a) = {a},
L(1) = {ε}.

Thus, the RE a (for some a ∈ Σ) represents a singleton set containing the
one-letter string a. In the above, we use ε to denote the empty string, that
is, the string consisting of no letters at all. Thus, the RE 1 represents the
singleton set containing just the empty string. Note that this is not the same
as the empty set!

The interpretation of a compound expression of the form E1 + E2 is
defined directly in terms of set union and the interpretations of E1 and E2:

L(E1 + E2) = L(E1) ∪ L(E2).

So, the + operator simply represents the merging of the languages it operates
on. The situation for expressions of the form E1E2 is a little bit more involved:

L(E1E2) = {w1w2 | w1 ∈ L(E1), w2 ∈ L(E2)}.

In the above, we use w1, w2 to range over strings (or words) in the languages
for E1 and E2. Writing two words w1, w2 side-by-side denotes their concate-
nation w1w2. Thus, informally, the interpretation of E1E2 is the set of all
words that can be formed by prepending all words from the language of E1

to all the words from the language of E2.
We will get back to defining the meaning of REs of the form E?

1 in a
moment, but first we present an example of a simple RE which provides the
first step towards solving the first problem from the introduction: finding
misspellings of the name “Gaddafi”. Consider the following RE, whose
interpretation is a set of 192 different ways to spell “Gaddafi” (including the
correct spelling):

Eg = (Q+ G+ K)(a+ u)(d+ t)(h+ 1)(d+ t)(h+ 1)af(i+ y)

3
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For example, we have Gaddafi ∈ L(Eg) and Qutthafy ∈ L(Eg), which can
easily be seen by using the rules introduced above.

There is a reason why the above notation is not used in practical imple-
mentations: it is very verbose. Using the syntax of Perl, the above RE can be
written [QGK][au][dt]h?[dt]h?af[iy]. To get a detailed explanation of the
meaning of this expression, try pasting it into a tool such as Regex101 [15]
(make sure “PCRE” is set as syntax). Note that this is still the exact same
expression as Eg, but using the syntactic sugar of Perl to make it shorter.

The second problem from our introduction, finding uses of “,” used as a
decimal mark, requires the last compound expression form: REs of the form
E?

1 . The reason for this is that the set of numerals containing “,” is infinite
(since the set of fractional numbers is infinite), and up until now, we have
only seen how to represent finite sets of strings using REs.

First, we define the notion of exponentiation of an RE: for any RE E and
number n > 0, we define

En = EE...E︸ ︷︷ ︸
n times

,

that is, En is simply the concatenation of E with itself, n times. Just as expo-
nentiation of real numbers is “repeated multiplication”, this exponentiation
is repeated concatenation. Furthermore, just as a0 = 1 for any a ∈ R, E0 = 1.
Hence, specifying something as an expression repeated zero times is the
same as specifying the empty string. Given an RE of the form E?

1 , we then
define

L(E?
1) = {ε} ∪

∞⋃
n=1

L(En
1 ) =

∞⋃
n=0

L(En
1 ).

That is, the interpretation of E?
1 is the union of the interpretations of any

number of repetitions of E1, plus the empty string. Let us put this to use,
and define the set of numbers which use “,” as a decimal mark:

Ed = (0+ 1+ ... + 9)?,(0+ 1+ ... + 9)(0+ 1+ ... + 9)?

Again, we can easily use the definition to verify that 123,5 ∈ L(Ed) and
00000,0 ∈ L(Ed). However, we do not have 123, ∈ L(Ed): if the “,” is not
followed by a digit, it is not necessarily in a wrong context.

For easy reference, we repeat here the full definition of the syntax and
language interpretation of regular expressions:

Definition 2. The syntax of regular expressions is described by the grammar:

E ::= a | 1 | E1 + E2 | E1E2 | E?
1 ,

where it is assumed that a finite alphabet Σ is given and that a ∈ Σ. �
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Definition 3. The language interpretation L(·) of a regular expression is defined
as:

L(a) = {a}
L(1) = {ε}

L(E1 + E2) = L(E1) ∪ L(E2)

L(E1E2) = {w1w2 | w1 ∈ L(E1), w2 ∈ L(E2)}

L(E?) = {ε} ∪
∞⋃

n=1

L(E)n =
∞⋃

n=0

L(E)n

L(E)n = L(E)L(E) . . .L(E)︸ ︷︷ ︸
n times

.

�

We will use summation notation as a shorthand for large alternatives. For
example, given a finite subset of symbols S ⊆ Σ where S = {a1, a2, ..., an}, we
will write ∑a∈S a for the expression a1 + a2 + ... + an. To reduce notational
clutter in later examples, we introduce the following definitions:

Edigit = ∑
a∈{0,1,...,9}

a

Ealpha =

(
∑

a∈{a,b,...,z}
a

)
+

(
∑

a∈{A,B,...,Z}
a

)

3 Regular Expression Matching

We have now seen the definition of regular expressions, and their interpre-
tation as sets of strings. If we want to be able to use regular expressions
as patterns in text search applications, we need a procedure which, given
any RE E and string w can answer the question of whether w ∈ L(E) – also
called the acceptance problem. In practical applications, we need a bit more
information than that, namely also information about how w is matched by
E. For now, we will just focus on the acceptance problem, however, and will
then proceed to show how the methods can be extended.

Most algorithms for solving the acceptance problem are based on finite
state machines (FSMs) also called finite automata, which are closely related to
regular expressions. A simple example of a finite automaton can be seen
below:

5
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1 2 3a

b

a

b

Every circle in the diagram above is called a state, with the numbers acting
as (unique) identifiers. Arrows are called transitions, and are marked by labels,
which in this case constitute letters from some alphabet. In the above, the
state 1 is the initial state, which is denoted by the orphaned incoming arrow,
and the state 3 is the accepting state, denoted by a double circle.

Like regular expressions, finite automata can be seen as describing sets
of strings. A string w is said to be in the set described by a given automaton
if it accepts w. Acceptance is determined by running the automaton with w
as input, as described in the following. An automaton is always in one of its
states, which is referred to as the active state. Before the automaton starts to
process the input string, it will be in the initial state. The automaton then
repeatedly removes the first symbol of w, using its value to determine the
next active state. If the active state has an outgoing transition labeled with
the current input symbol, the automaton transitions to the destination state,
which then becomes the active state for the next input symbol. If, when
there are no more symbols to be read, the active state is the accepting state,
then the automaton is said to accept w, meaning that w is in the set of strings
described by the automaton. Otherwise, w is rejected. If, at any point, the
currently active state does not have a transition labeled with the next input
symbol, the automaton halts and rejects the whole string.

For example, the automaton above accepts the string aba: we can get
from 1 to 2, reading a, from 2 to 2, reading b, and finally from 2 to 3, reading
a. Similarly, we can check that the automaton also accepts the strings b and
aa, but not aab, since the only way to read aa will take us to state 3, and
there is no way to get from 3 to any other state reading b.

An automaton like the above is called a deterministic finite automaton
(DFA), since the active state can transition to at most one successor state
for any given input symbol. In general though, a state may have multiple
outgoing transitions with the same label. Additionally, transitions may be
labeled using the special label ε (epsilon), which denotes a “free transition”
which can be taken regardless of the current input symbol, and which does
not consume it either. For example, the following is also an automaton:

6
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1

2

3

4
a

b

b

c

ε

ε

Such a construction is called a non-deterministic finite automaton (NFA), since
we may have to choose between multiple state candidates when performing
a state transition. Since not all of the possible candidates might lead us to
the accepting state, we will have to try them all, in parallel. We do this by
generalizing the concept of an active state to state sets: in each step of the
NFA simulation, we maintain a set S of states, all considered to be active
at once. The initial state set is just singleton set containing only the initial
state, and successor state sets are calculated by finding all possible successor
states resulting from reading the current symbol while in any of the states
from the current state set. The NFA accepts if the final state set contains the
accepting state: this implies that there must exist at least one path through
the NFA which reads the input string.

For example, to verify that abc we simulate the NFA as follows:

1. Let the initial state set be {1}.

2. Read a: Then 1
a→ 2 is the only possible transition, so the next state set

is {2}.

3. Read b: We can take the transitions 2
b→ 4 and 2 ε→ 1

b→ 3, yielding the
state set {4, 3}.

4. Read c: We have 4 6→ but 3
c→ 4, yielding the state set {4}.

5. No more symbols. Since 4 is in the final state set: accept.

In the next section, we will describe a method for constructing finite state
automata from REs. The method will not, in general, result in a DFA. How-
ever, any NFA can be converted to a DFA describing the same language, but
the conversion might lead to an exponential blow-up in size. Hence, we have
a trade-off situation between having a less efficient acceptance algorithm
versus spending a lot of time (and memory!) on a preprocessing phase. In
many cases, in particular the case where the input string is very large, the
extra preprocessing might be worth it, though.

7
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3.1 NFA Construction

There are many approaches to constructing a finite automaton from regular
expressions. The one we will present here is Thompson’s algorithm [18].

Thompson’s algorithm works by constructing an NFA from an RE bottom-
up: atomic expressions are converted first, and compound expressions are
converted by combining the automata resulting from converting subexpres-
sions.

For any RE E, the conversion proceeds by cases on the form of E. The
cases for atomic expressions are simple:

• Case E = a. Then we construct the automaton

a

• Case E = 1. We construct the automaton

ε

The translations are easily seen to be correct, in that the resulting NFA de-
scribes the same language as the original expression. For compound expres-
sions, we will use boxes to denote the automata resulting from converting
subexpressions.

• Case E = E1E2. We construct:

E1 E2

That is, we merge the final state of the NFA for E1 with the initial state
for E2, and let the initial state in E1 be our new initial state, and the
final state in E2 be our new final state.

• Case E = E1 + E2. We construct:

ε

ε

ε

ε

E1

E2

8
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The sum of two REs is handled by running their respective NFAs in
parallel.

• Case E = E?
1 . We construct:

ε ε

ε ε

E1

A Kleene star introduces a loop structure in the NFA.

Example 1. Consider the expression

E123 = ∑
a∈{0,1,2}

a = 1+ (2+ 3),

a simplified version of Edigit. The Thompson NFA for this expression is
obtained by constructing the NFAs for 1 and 2 + 3 and combining them
using the rules above. In turn, the NFA for 2+ 3 is constructed by combining
the NFAs for 2 and 3. First we need the three “primitive” NFAs:

1 2 3

Combine number two and three using the rule for +:

ε

ε

ε

ε

2

3

Combine this with the automaton for 1 using the same rule:

ε

ε

1

ε

ε

2

3

ε

ε

ε

9
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Example 2. Let us construct the NFA for the expression

E123s = (E123)
? = (1+ (2+ 3))?.

The NFA for the subexpression E123 is known from Example 1, so what
remains to be done is simply to apply the rule for Kleene star:

ε

ε

1

ε

ε

2

3

ε

ε

ε

ε

ε

ε

ε

�

Example 3. The expression

E123′ = 12+ 3

is constructed by taking the primitive NFAs for 1 and 2 and combining them
with the rule for concatenation:

1 2

We can now build the NFA for E123′ by combining this NFA with that of 3:

ε

ε

1 2

3

ε

ε

�
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4 Structure in Regular Expressions

Being able to solve the more general problem of regular expression parsing
allows for more advanced applications of regular expressions in text editing.
Consider the scenario where we have a large text mixing numeral styles
such as “1,234,567.89” and “1.234.567,89”: that is, it inconsistently switches
between writing numerals with digit grouping using the styles common in
English and Scandinavian writing, respectively. Regular expressions for
denoting the set of Scandinavian and English style numerals with digit
grouping can be formulated as

EnumS = ((EdigitE?
digit)︸ ︷︷ ︸

1

.)? (EdigitE?
digit)︸ ︷︷ ︸

2

, (EdigitE?
digit)︸ ︷︷ ︸

3

EnumE = ((EdigitE?
digit)︸ ︷︷ ︸

1

,)? (EdigitE?
digit)︸ ︷︷ ︸

2

. (EdigitE?
digit)︸ ︷︷ ︸

3

Correcting all Scandinavian style numerals to use English style is not
easily formulated as a regular expression matching problem, since there can
be an arbitrary amount of thousands separator symbols in a single numeral,
and we cannot relate specific parts of the input string to specific parts of the
regular expression with a high enough precision. Solving the sub-matching
problem gives us, for any sub-expression, the positions in the input string
where the given sub-expression matched. Ambiguity in this answer arises
when a sub-expression occurs under a Kleene star, as group 1 does in the
example above. Matching EnumS against the input 1.234.567,89 yields two
sub-matches for group 1:

1︸︷︷︸
1

. 234︸︷︷︸
1

. 567︸︷︷︸
2

, 89︸︷︷︸
3

An ad-hoc fix would be to generalize the matching problem to return
a list of match positions for each sub-expression. However, this would not
work well in general, since ambiguity would again arise in the case where
we are interested in multiple sub-expressions under one or more Kleene
stars. For example, consider the following RE denoting a language of lists of
key/value pairs with nullable values:

Epairs = (( Ealpha︸ ︷︷ ︸
1

,(Edigit︸ ︷︷ ︸
2

+NULL)))?

Performing sub-matching on the input (a:1)(b:NULL)(c:2) gives a list of
matches a, b, c for group 1, and a list of matches 1, 2 for group 2. However,
the relationship between the two results is lost, since there is not way to tell

11
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which of the keys a, b, c were associated with a null value. It can be argued
that our choice of groups are a bit silly, since the problem disappears by
extending group 2 to cover the right alternative as well. However, by doing
that, a sub-matching implementation has to store the text NULL for each null
value, which results in wasted memory. If we are parsing a huge key/value
database where most values are null, the overhead is not insignificant.

As we can see, sub-matching inherently throws away useful information
about the result of a match. To solve this, we generalize the problem of
sub-matching to the problem of full parsing. Informally, the problem can be
stated as follows: given an RE E and an input w, determine if w is in the
language denoted by E. If it is, return a parse tree specifying exactly how w is
matched by E.

Formulating this problem precisely requires us to introduce a bit more
formalism, which will be covered in the following section.

5 Regular Expressions as Types

There is a correspondence between the structure of regular expressions and
a certain group of type constructors. Intuitively, we can say that a regular
expression contains some structure, and this structure corresponds to a type.

The structure described by a regular expression arises naturally when one
thinks of the “meaning” of the different ways of building regular expressions:

• Concatenation expresses sequence, i.e., that something comes before
something else.

• Alternation expresses a choice between the left hand side and the right
hand side of the +.

• Kleene star expresses any finite number of repetitions of something.

The primitive symbols represent just themselves, and the special expression
1 represents “nothing”, in a manner that will be specified later.

A type is something that describes the “shape” of objects in a set. This
shape is exactly what is hinted at above, and considered like this the regular
expressions can be regarded as types. We write the types in the same way
as the normal regular expressions. Analogously to how a regular expression
denotes a set of strings, a regular expression interpreted as a type denotes a
set of structured values. These are denoted using the notation T (·).

12
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Definition 4. The set of structured values denoted by an RE type E is the set
T (E) defined as:

T (1) = {()}
T (0) = ∅

T (a) = {a}
T (E1E2) = T (E1)× T (E2)

= {〈v1, v2〉 | v1 ∈ T (E1), v2 ∈ T (E2)}
T (E1 + E2) = T (E1) + T (E2)

= {inl v1 | v1 ∈ T (E1)} ∪ {inr v2 | v2 ∈ T (E2)}
T (E?

1) = {[v0, . . . , vn] | vi ∈ T (E1)} .

�

Note that there is a case dealing with the RE type 0, which we have not
encountered before. It is also a valid “normal” RE, but not used in practice,
as it denotes the empty language and is of limited interest in the traditional
scenarios where REs are used. It does matter in the type interpretation,
therefore we include it here.

Example 4. Consider the regular expression that denotes words formed from
arbitrary combinations of a and b:

Eab = (a+ b)? .

If we build an automaton corresponding to Eab as described in Section 3.1,
the following words will all cause it to reach the accepting state:

ε a b ababba bbaabba.

By eye-balling the expression, it becomes clear that the language denoted is:

L(Eab) = {v | v is either empty or consists of combinations of as and bs} .

The type denoted by this expression is written in the same way as the
expression itself: we have a type Eab = (a+ b)?. This type denotes a set of
objects of a particular shape. We can deduce how they look:

T (Eab) = T ((a+ b)?)

= {[t0, . . . , tn] | ti ∈ T (a+ b)}
= {[t0, . . . , tn] | ti ∈ {inl v | v ∈ T (a)} ∪ {inr w | w ∈ T (b)}}
= {[t0, . . . , tn] | ti ∈ {inl v | v ∈ {a}} ∪ {inr w | w ∈ {b}}}
= {[t0, . . . , tn] | ti ∈ {inl a} ∪ {inr b}}
= {[t0, . . . , tn] | ti ∈ {inl a, inr b}} .

13
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This is the set of lists formed from arbitrary combinations of the two elements
inl a and inr b. The two tags inl and inr adds information about the structure;
it is encoded that a is the left and b the right choice in the sum. �

These structured values are said to inhabit the type; when a value “lives
in” a type E, it is an inhabitant of type E.

5.1 Handling Lists

At first glance it seems like we have three different ways of combining types
to form new types: +, ·, and [·]. However, a list is defined to be either an
empty list, written (), or an element combined with the remainder of the list
(the head and the tail of the list). Consequently, the list type can be written:

E? = EE? + 1,

that is, either a designated end symbol of type 1 or an element v of type E
along with the rest of the list of type E?. The only inhabitant of type 1 is (),
and if we assume that v is an inhabitant of type E and l is an inhabitant of
the remainder with type E?, we get an element 〈e, l〉 of type EE?. As these
two elements are combined using the sum, a list is either the object inr () or
the object inl 〈v, l〉, where l is again a list.

Example 5. The type Ea = a? denotes the set of lists of as. The element of
T (Ea) with three repetitions can be written:

[a, a, a] = inl 〈a, inl 〈a, inl 〈a, inr ()〉〉〉

Compare with the way the list [a,a,a] can be written in Haskell:

[a,a,a] = a:(a:(a:[]))

Thus, the Kleene star type is just the normal list type like it is used in Haskell
or ML. �

5.2 Values are Parse Trees

If we consider a tree structure in which all nodes are labeled with the con-
structors introduced in the structured values above and all leaves are labeled
with the primitive objects a, b, etc., we can view the structured values as
parse trees. Anything that does not take any arguments is a leaf, i.e., the
primitive objects, and anything that takes n > 0 arguments is a node with
n > 0 children. This is most easily illustrated with an example:
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Example 6. The value

[a, a, a] = inl 〈a, inl 〈a, inl 〈a, inr ()〉〉〉

from before can be written as the following parse tree:

inl

〈〉

a inl

〈〉

a inl

〈〉

a inr

()

�

In the following, we shall use the terms “value”, “structured value”,
“element of type E”, “inhabitant of type E”, and “parse tree” interchangeably.

5.3 Flattening Trees

We can defined the flattening of a parse tree as the function that removes
any structural information and leaves behind the underlying string, which
is contained in the leaves.

Definition 5. The flattening of a parse tree v is denoted | · | and is defined as:

|()| = ε, |a| = a, |〈v1, v2〉| = |v1||v2|, |inl v| = |v|, |inr v| = |v|.

�

Example 7. Consider the expression E = (ab + a)(b + 1). The language
interpretation is L(E) = {a, ab, abb}, and the type interpretation is

T (E) = T ((ab+ a)(b+ 1))

= T (ab+ a)× T (b+ 1)

= {inl 〈a, b〉, inr a} × {inl b, inr ()}
= {〈inl 〈a, b〉, inl b〉, 〈inl ab, inr ()〉, 〈inr a, inl b〉, 〈inr a, inr ()〉} .
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Drawn as trees, these values look like the following:

〈〉

inl

〈〉

a b

inl

b

〈〉

inl

〈〉

a b

inr

()

〈〉

inr

a

inl

b

〈〉

inr

a

inr

()

Using the flattening function on each of these trees give the strings

abb ab ab a

respectively. �

5.4 Ambiguity in Regular Expressions

Notice in Example 7 that there are two different parse trees that flatten to the
same string: 〈inl 〈a, b〉, inr ()〉 and 〈inr a, inl b〉 both flatten to ab. This fact is
not visible in the language interpretation because the structure of expressions
is ignored from the beginning. This is an example of an ambiguous RE:

Definition 6. An RE E is ambiguous exactly when two or more parse trees in
T (E) flatten to the same string:

∃v1, v2 ∈ T (E). v1 6= v2 ∧ |v1| = |v2|.

�

6 Regular Expression Parsing

We are now in a position to formulate a more fine-grained way of “running”
a regular expression on an input string. In Section 3, the task was to produce
a yes/no answer to the question

“Does the string s match the expression E?”

This was adjusted in Section ?? to find substrings of the input string which
match the E. The substring problem is more general, as we always know the
answer to the basic question of matching if we know that there are substrings
that match. If the problem is reformulated such that we want to find a parse
tree for a given RE, we generalize even further: If we have a parse tree
we have an answer to both the simple yes/no question and the sub-match
question.
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Definition 7. Given an RE E, to parse a string s under E is to construct a parse
tree v that inhabits T (E), and whose flattening is s: |v| = s. �

When an RE is ambiguous the parser must use some strategy to pick
between the possibilities. This strategy is called a disambiguation strategy.

We are now able to handle the problems encountered in the earlier exam-
ples from Section 4.

Example 8. Under the type interpretation of EnumS the input 1.234.567,89
corresponds to the following value:

〈[〈〈1, []〉, .〉, 〈〈2, [3, 4]〉, .〉],
〈〈〈5, [6, 7]〉, ,〉,
〈8, [9]〉〉〉

Here, 1 is abbreviation of the actual value of the digit 1 under the type inter-
pretation of Edigit, which is inr inl 1. The entire structure of the original RE is
preserved in the value, so the problems discussed on page 11 do not arise. Be-
cause we do not lose any structural information, we can write a program of
the type EnumS −→ EnumE that converts values using the Scandinavian-style
thousands-separator to values using the English-style separators. �

Example 9. Consider the input (a:1)(b:NULL)(c:2) and the expression
Epairs from page 11. Recall that with the naïve submatch extraction we could
not recreate a full dictionary from this string. The corresponding value of
this string under the type interpretation is

[〈〈a, ,〉, inl 1〉,
〈〈b, ,〉, inr NULL〉,
〈〈c, ,〉, inl 2〉]

where NULL is shorthand for the actual value associated with NULL. Clearly,
this piece of data contains enough information to build a dictionary. �

6.1 Bit-Coding

There is a compact way of representing each value, by “splitting” the infor-
mation contents between that which is universal to all values T (E), and that
which is specific to a particular value v ∈ T (E). Take the value from before:

〈inl a, 〈inl a, 〈inl a, inr ()〉〉〉,

and rewrite it by replacing occurrences of inl X and inr X with 0 and 1:e

〈0, 〈0, 〈0, 1〉〉〉.
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We may do this because, given a subexpression E1 + E2, the fact that the
left choice or the right choice was taken uniquely specifies the information
contained in the particular usage of + in a value v. Whatever information is
required for a particular v in E1 or E2 must then be added, but this will no
longer be information about that particular +. Specifically, for the expression
a+ b, there is exactly one possibility on either side of the +, hence there is
no information content, and we may discard it. One can think of this as the
fact that a is on the left-hand side already is recorded in the expression itself,
and there is therefore no reason to repeat it in the value.

Now, if we consider the sequential composition of REs, we notice that
there is no information contents in the sequence – any value inhabiting the
type must consist of the first part followed by the second part. Hence, the
constructor 〈〉 is not really needed, as it does not encode any information
specific to any particular value, leading us to reduce further:

0001.

This is just a bit-string! These four bits encode, in a quite compact manner,
the entire value, provided the RE is known. All information contents specific
to the value itself is represented in the bit-string, and any information that
is general to every value inhabiting the type is left in the type itself.

Example 10. To illustrate why both the bit-string and the RE is needed,
consider the bit-string

0001

again. Given RE E1 = (b+ a)(a+ b)(b+ a)(a+ b) this bit-string is the value

〈inl b, 〈inl a, 〈inl b, inr b〉〉〉,

but given the RE E2 = a? the value is

〈inl a, 〈inl a, 〈inl a, inr ()〉〉〉.

�

We call the bit-string that encodes a parse tree a bit-code. To solve the
parsing problem it suffices to construct a bit-code for a parse tree, as this can
be converted to a “proper” data structure uniquely, given the RE type.

7 Coercions and Transformations

Because all information about the structure of the regular expression is
retained in a structured value, we can perform transformations on the pieces
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of data that can be reflected in transformations of the regular expressions
themselves. In this section we will discuss two ways of transforming data:
one that can change the underlying text string called transformations, and one
that always preserves it, called coercions.

7.1 Transformations

Recall that in the example with thousand separators in Section 4 we wanted
to change between two different styles of separators easily, but there was
no easy way of specifying this change. When we have a full parse tree, this
transformation can be easily formulated as a function between the two types
designating the Scandinavian and English style, respectively.

To construct the transformation, we will at first need a way to transform a
dot to a comma and vice versa. We therefore define the functions fromComma
and fromDot with the types , → . and . → ,, respectively. Note that
because we view the regular expressions as types, we can construct types that
designate functions between regular expressions. These particular regular
expressions are trivial because the each designate a singleton-set:

T (,) = {, }
T (.) = {.} ,

so the corresponding implementations of the functions should be simple too:

fromComma : : Comma > Dot $\ l i t { , } \ r i g h t a r r o w \ l i t { . } $
fromComma Comma = Dot
fromDot : : Dot > Comma $\ l i t { . } \ r i g h t a r r o w \ l i t { , } $
fromDot Dot = Comma

The pseudo-code syntax we will use resembles that of Haskell. The above
code snippet defines two functions, each of them taking a value of type ,
or . and producing a value of the other type. Because the types are both
singletons the pattern matches are exhaustive.

7.2 Functorial Program Composition

These programs work as long as the comma/dot is the only symbol present.
Clearly, this is not enough for a more complicated example, so there must
be a way to compose programs. Because we are working with regular ex-
pression types, we need concatenation, sum, and Kleene star. These three
constructs in combination with the base programs of the form described
above will allow us to concisely express transformations on structured val-
ues.
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Concatenation Given two programs p1 and p2 with the types E1 → E2 and
F1 → F2, we can form a program p = p1× p2 with the type E1× F1 → E2× F2.
A straight-forward implementation in Haskell could look like the following:

p1 : : E1 > E2 $E_1 \ r i g h t a r r o w E_2$
p2 : : F1 > F2 $F_1 \ r i g h t a r r o w F_2$
p : : ( E1 , F1 ) > ( E2 , F2 ) $E_1 \ t i m e s F_1 \ r i g h t a r r o w E_2 \ t i m e s F_2$
p ( v1 , v2 ) = ( p1 v1 , p2 v2 )

Note that the type E1 × F1 and the data 〈v1, v2〉 are written (E1, F1) and
(v1, v2) in Haskell.

Sum Likewise, if programs p1 and p2 are as above, we can form their sum
p = p1 + p2 which will have the type E1 + F1 → E2 + F2. In Haskell this
looks like:

p : : Either E1 F1 > Either E2 F2 $E_1+F_1 \ r i g h t a r r o w E_2+F_2$
p ( Left v ) = Left ( p1 v )
p ( Right v ) = Right ( p2 v )

Again there is a small discrepancy between Haskell-style syntax and that
used elsewhere, which should be self-explanatory.

Kleene Star The construct for Kleene stars will also be familiar to func-
tional programmers. Given a program p0 with the type E1 → E2, we must
construct a program p = p?0 with the type E?

1 → E?
2 . When you recall that

the Kleene star is simply a list data type under the type interpretation, you
easily see that this function is just an application of map!

p : : [ E1 ] > [ E2 ] $E_1^\ s t a r \ r i g h t a r r o w E_2^\ s t a r $
p = map p0

Constants To handle the constant transformation we use the identity func-
tion, and the failing transformation corresponds to converting something to
the regular expression 0. As it does not have any elements, such a program
will always fail:

id : : a > a
id x = x
f a i l : : a > b $E \ r i g h t a r r o w F$
f a i l = undefined a lways f a i l s

We are now able to formulate the transformation between Scandinavian
and English style numbers from earlier examples.
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Example 11. To transform numbers conforming to the format EnumS into the
format of EnumE we construct the following program:

(id× fromDot)? × id× fromComma× id

which has the type

((EdigitE?
digit) .)

?(EdigitE?
digit) , (EdigitE?

digit)

→ ((EdigitE?
digit) ,)

?(EdigitE?
digit) . (EdigitE?

digit)

(The ×-symbol is omitted for brevity.) The function id is polymorphic and
has the type Edigit × E?

digit → Edigit × E?
digit in this example. �

7.3 Coercions

The transformation presented in the example above does not preserve the
underlying string. Another type of action which we call coercions do preserve
strings, but they still transform the data from one type to another. For
instance, values of the regular expression a+ b may be coerced into values of
the regular expression b+ a and vice versa. In the language interpretation,
this would have been a trivial statement, as the sum operator is commutative.
Hence, there the two expressions are essentially the same. With the type
interpretation this is different. Because we are interested in the structure
and not just the set of words permitted by a finite automaton, changing the
structure by swapping the order of the summands is not a trivial operation
anymore.

One can think of the existence of a program converting values of one
regular expression to another as a proof of the fact that one expression is
“less than” another. This constructive interpretation of proofs is a very pow-
erful notion, and is a complex field of study in itself. Four our purposes,
the proof system is limited to only expressing inequalities between regular
expressions. In the language interpretation, the fact that expression E is “less
than” expression F means that the language of F is a superset of that of E:

E ≤ F ⇐⇒ L(E) ⊆ L(F).

It is a bi-implication because Kleene algebra is complete for the regular
lanugages [12]. Consequently, if the underlying string of a value is not
changed, it should be possible to transform the value from one of type E
into one of type F. This is called a coercion, as it “forces” the parse tree into
a different shape while still keeping the leaves intact.

As a first example, consider the expressions a+ b and b+ a. They both
represent the language {a, b}, so we expect

a+ b ≤ b+ a and b+ a ≤ a+ b
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to hold, i.e., a+ b = b+ a. When thinking only in terms of the underlying
languages, this is clearly the case. The added structure of our parse trees,
however, highlights that this equivalence carries computational contents, that
“something is done”. In this example, the computational action is that which
replaces inl tags with inr tags. We can write this as a Haskell-program:

re tag : : Either a b > Either b a
re tag ( Left v ) = Right v
re tag ( Right v ) = Left v

This program should be thought of as a proof that the regular expression
a+ b is contained in b+ a. The program is polymorphic and it never inspects
its input apart from the tag, so it states a much more general property:

E + F ≤ F + E.

Instantiating E and F with a and b yields a proof of the inequality going
one way, and switching the instantiation yields the opposite one. Hence, this
program proves that

E + F = F + E,

and it does so by specifying how values with one type should be transformed
into values with another type without altering the underlying strings.

Another instructive example is the equivalence of the expressions a×
(b× c) and (a× b)× c. Only the structure and not the ordering of symbols
is changed, so we can write a coercion that reorders the tuples inhabiting the
two product types:

assoc : : ( a , ( b , c ) ) > ( ( a , b ) , c )
assoc ( x , ( y , z ) ) = ( ( x , y ) , z )
assocInv : : ( ( a , b ) , c ) > ( a , ( b , c ) )
assocInv ( ( x , y ) , z ) = ( x , ( y , z ) )

In this example there are two programs, one in each direction, witnessing
the regular expression inequalities

E× (F× G) ≤ (E× F)× G and

(E× F)× G ≤ E× (F× G),

respectively. Hence, combining the two represents a proof of

E× (F× G) = (E× F)× G.
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E + (F + G) = (E + F) + G (1)
E + F = F + E (2)
E + 0 = E (3)
E + E = E (4)

E× (F× G) = (E× F)× G (5)
1× E = E (6)
E× 1 = E (7)

E× (F + G) = (E× F) + (E× G) (8)
(E + F)× G = (E× G) + (F× G) (9)

0× E = 0 (10)
E× 0 = 0 (11)

Figure 1: Axioms for idempotent semirings.

7.4 Kleene Algebra

The algebra of regular expressions is called Kleene algebra (KA), and the
small examples we have studied above are part of the axiomatization of this
algebra. Kozen presented an axiomatization that is sound and complete for
the regular sets of strings, i.e., an inclusion between any two regular sets
of strings can be shown as an inequality in KA with these axioms, and any
inequality in KA shown using these axioms represents an inclusion between
regular sets of strings [12].

A Kleene algebra is an structure containing an underlying set, the carrier
set, three operations, +, ×, and ?, and two special symbols 0 and 1. Hence,
terms in KA are just regular expressions and the carrier set the alphabet. The
structure satisfies all the axioms of idempotent semirings, which express the
behaviour of the + and × operations and how they interact. Furthermore,
four extra axioms for the Kleene star are added to make it a Kleene algebra.
Figures 1 and 2 show the axioms for idempotent semirings and the added
axioms governing the Kleene stars.

The two examples from before correspond to axioms 2 and 5. Each
axiom in Figure 1 can be given a direct computational interpretation – a set
of two programs that transform data from left to right and vice versa [9].
By using a coinductive rule that allows “loops” in proofs, the Kleene star
can be formulated as a fix point computation. The idea is, that if, under the
assumption that some function f coerces E into F, it is possible to construct
another function c that also coerces E into F, we may use the constructor
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1 + E× E? ≤ E? (12)
1 + E? × E ≤ E? (13)

E + F× X ≤ X → F? × E ≤ X (14)
E + X× F ≤ X → E× F? ≤ X (15)

Figure 2: Axioms governing Kleene star.

fix to create the function fix f.c with the type E? → F?. Obviously, if no
restrictions are enforced we may trivially pick c to be the f that is assumed
– this is clearly unsound, so a side-condition on the structure of f must be
enforced [9].

Figure 3 shows the primitives in the inference system. Γ is an environ-
ment of hypotheses that is used with the fix rule:

Γ, f : E ≤ F ` c : E ≤ F
Γ ` fix f .c : E ≤ F

Subproofs can be combined to form larger proofs using the method of func-
torial composition described above – remember that the proofs are just pro-
grams. Let us reformulate the composition rules in the style of inference
rules to underline the fact that we are thinking of it as a proof system:

Γ ` c : E ≤ E′ Γ ` d : F ≤ F′

Γ ` c + d : E + F ≤ E′ + F′
Γ ` c : E ≤ E′ Γ ` d : F ≤ F′

Γ ` c× d : E× F ≤ E′ × F′

A proof usually consists of a sequence of steps performed in succession, so
we need a way to combine subproofs sequentially as well:

Γ ` c : E ≤ E′ Γ ` d : E′ ≤ E′′

Γ ` c; d : E ≤ E′′

Each of the primitive functions in Figure 3 has a computational inter-
pretation. Two of these we have already seen in the form of Haskell code
above. Most of the rest are similarly simple functions. Of special note is
wrap; compare the type signatures of the standard foldr function and the
signature of wrap:

fo ldr : : ( a > b > b ) > b > [ a ] > b

The function takes three elements as input:

• a function that inserts a new element of type a into the composite
structure of type b,
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Γ ` shuffle : E + (F + G) = (E + F) + G
Γ ` retag : E + F = F + E
Γ ` untagL : 0 + F = F
Γ ` untag : E + E ≤ E
Γ ` tagL : E ≤ E + F
Γ ` assoc : E× (F× G) = (E× F)× G
Γ ` swap : E× 1 = 1× E
Γ ` proj : 1× E = E
Γ ` abortR : E× 0 = 0
Γ ` abortL : 0× E = 0
Γ ` distL : E× (F + G) = (E× F) + (E× G)

Γ ` distR : (E + F)× G = (E× G) + (F× G)

Γ ` wrap : 1 + E× E? = E?

Γ ` id : E = E

Figure 3: Functions implementing Kleene algebra axioms.

• a start composite element of type b,

• a sequence of elements to be added, of type [a].

This type signature is the same as the axiom 14 read as a type!

8 Two-Phase Regular Expression Parsing

In this Section we will introduce the principles behind the two-phase RE
parsing algorithm from [7].

8.1 Bit-Codes as Oracles

Imagine that you have to guide a small pebble through an NFA by placing
it on the states and moving it along the transition edges. The information
contained in the bit-code can serve as an oracle, which can be queried each
time there are two possible moves for the pebble. The pebble moves left or
right depending on whether the “current” bit is 0 or 1. For the situations
where there is only one outgoing edge, the pebble will simply move to the
state pointed at regardless of the label. The idea that 0 and 1 control which
edge should be picked can be encoded in the NFA itself. Occurences of the
sum construction:
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ε

ε

E1

E2

ε

ε

becomes:

0

1

E1

E2

ε

ε

.

In the Kleene star construction there is also a notion of a choice; the pebble
must either do another iteration in the loop or exit it. This is representable
in the same way as above, and instances of the construction for E?

1 :

ε ε

ε ε

E1

becomes: ε 1

0 ε

E1

.

Notice that these two cases are the only two in which a choice is introduced.
This corresponds nicely to the previous observation that only the information
concerning which side of a sum is “used” needs to be stored for a value; all
other information is implied by the type itself.

8.2 Handling Ambiguous REs

Knowing the labels on outgoing edges does not help when parsing a string,
as it is impossible to know which, if any, of the two possible paths will
succeed. As described in Section 3, this can be remedied by using state sets.
Note that a successful parse must return exactly one bit-coded parse tree,
hence a disambiguation strategy must be used at some point in the parsing
process.

Observe that whenever a state has two incoming edges there is exactly
one corresponding state with two outgoing edges. This can easily be verified
by inspecting the cases in the NFA construction algorithm. Only two cases
introduce states with two ingoing edges, namely the cases for E1 + E2 and
E?

1 , and the one-to-one correspondence is maintained in both. The remaining
cases trivially preserves the symmetry. Note that in the Kleene star case,
one state has both two incoming and two outgoing edges; this preserves the
one-to-one correspondence.

The symmetrical structure of the NFAs can be included in the construc-
tion algorithm, along with the bit labels described previously. We use the
symbols 0 and 1 as the duals to 0 and 1. Sum:
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0

1

E1

E2

ε

ε

becomes:

0

1

E1

E2

0

1

.

Likewise, Kleene star:

ε 1

0 ε

E1

becomes: 1 1

0 0

E1

.

We have now removed all ε-edges from the NFA by labelling them with
bits. This new kind of NFA is called an augmented NFA (aNFA). Its edges can
be divided into three kinds:

• transition edges are labelled with letters from the alphabet;

• logging edges are labeled with 0 or 1;

• choice edges are labeled with 0 or 1.

If a state has two outgoing edges they will always be choice edges, and the
state is called a split state. Conversely, states with two incoming edges are
called join states, and the edges will always be logging edges.

8.2.1 Greedy Left-Most Disambiguation Strategy

The two-phase algorithm uses the greedy left-most disambiguation strategy.
This strategy causes the algorithm to produce the same parse tree that a naïve
recursive descent parser would produce; the left choice is always favored
over the right choice, and if the left choice fails, go back in the RE structure
and try the right alternative.2

Clearly, when two parallel paths through the aNFA are followed, only
if both paths succeed will they both reach the join state. But in that case
we know which path was the leftmost, as it is the one entering through
the 0-edge. Hence, this path is saved and the other one discarded, and the
ambiguity is resolved.

2This type of parser is called a backtracking parser, and it is the way Perl implements
regular expression matching (Perl does not perform full RE parsing). Deceptively simple,
they suffer from an exponential blow-up in running time on inputs that causes the algorithm
to backtrack a lot.
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Example 12 (Unfinished algorithm). The expression Eaa = aa+ aa is am-
biguous, as there are two different parse trees that both flatten to the same
string:

|inl 〈a, a〉| = |inr 〈a, a〉| = aa.

The aNFA for Eaa is (the nodes are labeled for easy reference):

0

1

5

2

6

3

7

4

0

1

a

a

a

a

0

1

Simulating the aNFA is very similar to how a normal NFA is simulated.
Initially, the active state set is {0}. On the input a, the aNFA can move along
both a-labeled edges, 1 → 2 and 5 → 6, making the new active state set
{2, 6}. After another a, the transitions 2 → 3 and 6 → 7 are taken, and as
3→ 4 and 7→ 4 both are logging edges, the next (and final) active state set
will be {4}. Both the 0 and the 1 edge have been taken, but due to the greedy
left-most strategy, only the path that took 0 is stored. This path corresponds
to the left choice, which has the bit-code 0. �

8.3 Logging

The procedure sketched so far implies that all paths taken throughout the
simulation of the automaton be stored until it can be decided which one of
them is the desired one. By exploiting the symmetries in the aNFA, we can
do something much more space-efficient than simply storing the paths as
we go along.

Each time an edge into a join-state is traversed, and a choice between left
or right therefore is made, we always pick the left option if present. Due to
the one-to-one correspondence between join and split states, disambiguating
a join state only disambiguates one split state. It is therefore enough to store,
for each join state, one bit indicating whether the left or right edge has been
traversed to reach it. But this is exactly the dual bits 0 and 1 from the two
incoming edges! Consequently, when a join state is reached, the algorithm
must store the bit on the incoming edge followed into the join state, with
preference for the 0-bit. This must be done for all join states in the aNFA,
and we see that n · c bits must be stored, where n is the length of the input
string and c the number of join states.

Storing these “log bits” does not constitute a parse tree. Once the input
has been processed, a backwards pass is performed through the aNFA from
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the accepting state to the initial state. The stored bits are used here as an
oracle that guides through the automaton. There is no need to keep the input
string, as the logged bits encode all the information specific to the particular
run of the automaton. Because the aNFA is traversed backwards, the log bits
are needed in reverse order of how they were stored – we use a stack for
this.

8.4 State Lists

There is one more change to the NFA-simulation algorithm we have to intro-
duce before the algorithm is complete. In the normal algorithm, the active
states are stored in sets, and hence the ordering between them does not mat-
ter – the exact way in which a string is accepted by an automaton is irrelevant
to the fact that it is accepted. In the parsing algorithm we are interested in
one particular path through the aNFA, and therefore the order in which the
states are reached matters. Therefore, the algorithm uses lists instead of sets
to store the active states. The leftmost alternative is favored in choices, but
the next state list is ordered based on the order the states are reached from
the current state list.

Example 13. The expression

Eambig = (aa+ a)?

is ambiguous. The input string aaa may be parsed (at least) as either

〈inl inl 〈a, a〉, 〈inl inr a, inr ()〉〉 (00011),

〈inl inr a, 〈inl inl 〈a, a〉, inr ()〉〉 (01001), or

〈inl inr a, 〈inl inr a, 〈inl inr a, inr ()〉〉〉 (0101011).

The correct one according to the greedy leftmost strategy is the first one. If
we simulate the aNFA for Eambig, the active state lists change as pictured
below. The lists are ordered such that the topmost element at each instance
is the highest prioritized (i.e., lefmost) state.

0 3

7

9

4

3

7

9

3

7

9

4

4

3

7

9

ε a a a

0 1

2

3

7

4 5

8

6

91 1

0 0

0

1

a a

a

0

1
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The final states are [4, 3, 7, 9]. This includes the accepting state, so the
string matches. This representation corresponds to storing all the paths. We
can reconstruct the parse tree by tracing backwards from the accepting state
and emit all the bits on the traversed edges: 9 → 7 → 4 → 3 → 0 yields
11000, the (reversed) correct bitcode.

States 1 and 6 are the only join states in the automaton. First, write down
the log bit information associated with each transition between states, with
the bit for state 1 above the bit for state 6:

0 3

7

9

4

3

7

9

3

7

9

4

4

3

7

9

ε a a a

1
/

1
/

1
/

0
1

0
1

0
1

0
0

0
0

0
0

0
1

0
1

0
1

.

We thus have enough information in the following bits to reconstruct the
correct parse tree:

ε a a a
1 1 0 0 0
6 / 1 0 1

If we use these log bits as an oracle, we can trace deterministically backwards
through the aNFA. Every time a symbol transition is traversed, the stack of
log frames is popped (indicated with subscript p):

9→ 1→0 6→1 8→p︸ ︷︷ ︸
0
1

7→ 2→ 1→0 6→0 5→p︸ ︷︷ ︸
0
0

4→p︸ ︷︷ ︸
0
1

3→ 2→ 1→1 0︸ ︷︷ ︸
1
/

.

The active log frames are written below the path, and the arrow subscripts
indicate how choices have been determinized. This path yields the correct
bitcode. �
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9 Derivatives of Regular Expressions

One can think of the fact than an automaton is in an accepting state as if that
there is an “end transition” out of that state, followed only in the situation
when there is nothing left in the input. In a general automaton, i.e., not a
Thompson NFA/aNFA, there might be other transitions from the final state(s)
than this hypothetical end transition which corresponds to allowed input
characters that are matched at that point in the automaton. For example,
consider the following automaton for the regular expression ab?:

1 2a

b

We can think of the states of this automaton as representing languages, i.e.,
the sequences of characters that eventually lead to an accepting state. State 1
corresponds to the language

L(ab?) = {a, ab, abb, · · · } ,

as no input symbols have been read yet, and state 2 corresponds to what
remains after an a, which is the language

L(b?) = {ε, b, bb, · · · } = {s | as ∈ L(ab?)} .

Note that the language for state 2 contains the empty word ε: the empty
sequence of characters leads to an accepting state, which is the state 2 itself.
Two points are relevant in this example:

• there is a notion of derivation between the languages of states 1 and 2,

• a state is accepting if its language contains ε.

We can easily define a function ε on regular expressions that converts
any regular expression E into either the expression 1 or the expression 0,
depending on whether ε is contained in the language denoted by E.

Definition 8 (Empty word function). The empty word function ε is defined as:

ε(1) = 1 ε(0) = 0 ε(a) = 0

ε(E1E2) = ε(E1)ε(E2) ε(E1 + E2) = ε(E1) + ε(E2) ε(E?
1) = 1.

Or, equivalently:

ε(E) =

{
1 if ε ∈ L(E)

0 otherwise.

�
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The way of thinking in the example above can be formulated in a detailed
manner, by inspecting regular expressions. The derivative δa (E) of a regular
expression E with respect to a symbol a is the expression whose language is
all strings in Es language that start with an a, with that a removed:

L(δa (E)) = {s | as ∈ L(E)} .

We can think of the relationship between an expression E and its derivative
as a part of an automaton, where each state represents a particular regular
expression:

E δa (E)a

When E is 0 its language is empty, and hence the derivative’s language
is also empty, regardless of which symbol the derivate is relative to:

δa (0) = 0.

Drawn as an automaton, this is:

0

a

,

i.e., an automaton where there is no way of reaching the accepting state.
For E = 1, the language contains only the string ε. Hence, there are no

strings that start with any symbol a, and the derivative is empty:

δa (1) = 0.

There is therefore also no way of reaching an accepting state in the automaton
for the derivative expression:

1 0a .

A slightly more interesting case is when E = a. Now there is a string
that starts with a in the language, namely a itself! The derived language
therefore contains only the empty word, and the expression is:

δa (a) = 1.

Note that the language L(1) contains ε (in fact it only contains ε), so thought
of as an automaton state it accepts only the empty string. But this means
that there is only an empty path to traverse in order to reach an accepting
state, and hence it must itself be an accepting state:
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a 1a
.

However, if instead the expression is E = b, where b 6= a, there is no
strings starting with a, and the derived expression becomes:

δa (b) = 0.

In a sum expression, the language is just the union of the two languges
of the summands. Consequently, the derivative of a sum is just the sum of
the derivatives of its summands:

δa (E1 + E2) = δa (E1) + δa (E2) .

In the case where E = E1E2, the result depends on how E1 behaves. We
want to construct an expression that denotes the language that consists only
of substrings from L(E) that come after an a. Recall how the language of
a concatenation is defined: It is the Cartesian product of the strings in the
language of the two subexpressions. Therefore, if L(E1) contains the empty
string, there can be a string in L(E1E2) starting with a whose “E1-part” is
just ε. The derivative is therefore dependent on the empty word function:

δa (E1E2) = δa (E1) E2 + ε(E1)δa (E2) .

The algebraic rules of regular expressions contains the two axioms:

1E = E1 = E

0E = E0 = 0,

so the above expression is the same as:

δa (E1) E2 + ε(E1)δa (E2) =

{
δa (E1) E2 + 0δa (E2) if ε ∈ L(E1)

δa (E1) E2 + 1δa (E2) otherwise

=

{
δa (E1) E2 if ε ∈ L(E1)

δa (E1) E2 + δa (E2) otherwise.

We easily see that the intuition about the “E1-part” dependent on whether
L(E1) contains ε is reflected.

If the expression is E = E?
1 , the derivative represents the strings that

consists of repetitions of strings from L(E1) with a removed. This is the
same as the strings from L(E1) with a removed followed by repetitions of
normal strings from L(E1). The above discussion regarding the empty word
is relevant here, too. Luckily, the derivative can be formulated in terms of
concatenation, ensuring that the case when ε ∈ L(E1) is handled properly:

δa (E?
1) = δa (E1) E?

1 .
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The derivative defined here is called the Brzozowski-derivative, after the
author of [3]:

Definition 9 (Brzozowski-derivative). The (Brzozowski-)derivative with re-
spect to a, δa (·), is defined as:

δa (1) = 0

δa (0) = 0

δa (a) = 1

δa (b) = 0 (if a 6= b)

δa (E1 + E2) = δa (E1) + δa (E2)

δa (E1E2) = δa (E1) E2 + ε(E1)δa (E2)

=

{
δa (E1) E2 + δa (E2) if ε ∈ L(E1)

δa (E1) E2 otherwise

δa (E?
1) = δa (E1) E?

1 .

�

10 Disambiguation Strategies

We have already seen one disambiguation strategy, the greedy leftmost one.
In this Section, we briefly revisit disambiguation strategies.

10.1 Greedy

For the sake of completeness we repeat here the greedy strategy (or greedy
leftmost strategy). This strategy always “goes left” in the NFA, and backtracks
back to the most recent point where it can go right instead when a path fails.
This is exactly the strategy that a simple recursive descent parser follows.

Example 14. The language of expression

Eamb = (a+ ab)(b+ 1)

is
L(Eamb) = {a, ab, abb} .

As the expression is ambiguous on the input ab, the exact parse tree—either
00 or 11—depends on the disambiguation strategy. The greedy leftmost
strategy is the one that causes a parser to greedily take the left option in the
first choice, consuming an a from the input string, and thereafter take the
left option in the second choice, consuming a b. It thus produces the parse
tree 00. �
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Example 15. If the expression Eamb were a bit different, say,

E′amb = (a+ ab)(c+ 1),

the parse tree 00 would not be valid for the input string ab. On this input,
the parser would first take the left option and consume the a, as above. The
following b would cause the left option of the second choice to fail, as it is
a c, which makes the parser try the right branch. But this one also fails, as
that branch is 1! Having explored all options at this level, there must be an
earlier choice that was wrong. The parser backtracks to the previous choice,
picks the right option, and again tries the left option of the second choice.
This of course fails again, so the right option is tried, which completes the
parsing as only the empty string remains in the input. The greedy parse is
11. �

There is an elegant correspondence between the greedy leftmost strategy
and the lexicographical ordering on bitcodes. A lexicographical ordering is the
intuitive “alphabetical” ordering, where the first letters in two strings that
differ determine the ordering between them:

0s < 1s′

0s < 0s′ if s < s′

1s < 1s′ if s < s′

and the two strings are equal otherise. The greedy leftmost strategy picks
the least bit-code amongst the possible parses according to this ordering.

Usage The greedy strategy is most notably used in Perl [19], and therefore
also in engines that are “Perl-compatible”, like PCRE [8].

10.2 POSIX

The other common disambiguation strategy we refer to as POSIX, after its
defining body [10]. This strategy prefers the longest, leftmost parse, prioritizing
the length of the string that a particular subexpression matches. Roughly, it
will try to shift as much of the parse tree to the left in the expression.

Example 16. Let us inspect the expression Eamb on the input ab again. The
POSIX strategy will cause parsing to try to consume as much as possible of
the input string in the first subexpression (a+ ab). Luckily, the whole input
can be processed by selecting the right option. In the next subexpression, the
right option must therefore also be taken, as no input symbols remain. This
makes the POSIX parse tree of ab on Eamb 11. �
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The POSIX strategy is more complicated than the greedy because of
the dependence on information about the length of matched strings in the
various subexpressions.
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