Above-Ground Biomass Prediction for Croplands at a Sub-Meter Resolution Using UAV–LiDAR and Machine Learning Methods
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Dokumenter
- Fulltext
Forlagets udgivne version, 19,9 MB, PDF-dokument
Originalsprog | Engelsk |
---|---|
Artikelnummer | 3912 |
Tidsskrift | Remote Sensing |
Vol/bind | 14 |
Udgave nummer | 16 |
Antal sider | 22 |
ISSN | 2072-4292 |
DOI | |
Status | Udgivet - 2022 |
Bibliografisk note
Funding Information:
This project received funding support from the Talent Program Horizon 2020/Marie Skłodowska-Curie Actions; a Villum Experiment grant from the Velux Foundations, the Drone-Borne LiDAR and Artificial Intelligence for Assessing Carbon Storage (MapCland) project (grant number: 00028314); the Deep Learning for Accurate Quantification of Carbon Stocks in Cropland and Forest Areas (DeepCrop) project (UCPH Strategic plan 2023 Data + Pool); as well as a UAS ability infrastructure grant from the Danish Agency for Science, Technology, and Innovation. The authors also acknowledge the financial support from the Independent Research Fund, Denmark, through the Monitoring Changes in Big Satellite Data via Massively-Parallel Artificial Intelligence project (grant number: 9131-00110B) and the Villum Fonden through the Deep Learning and Remote Sensing for Unlocking Global Ecosystem Resource Dynamics (DeReEco) project (grant number: 34306).
Publisher Copyright:
© 2022 by the authors.
Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk
ID: 318819062