Classification of protein profiles using fuzzy clustering techniques: an application in early diagnosis of oral, cervical and ovarian cancer

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningfagfællebedømt

Standard

Classification of protein profiles using fuzzy clustering techniques : an application in early diagnosis of oral, cervical and ovarian cancer. / Karemore, Gopal; Mullick, Jhinuk B.; Sujatha, R.; Nielsen, Mads; Santhosh, C.

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2010. s. 6361-6364 (I E E E Engineering in Medicine and Biology Society. Conference Proceedings).

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningfagfællebedømt

Harvard

Karemore, G, Mullick, JB, Sujatha, R, Nielsen, M & Santhosh, C 2010, Classification of protein profiles using fuzzy clustering techniques: an application in early diagnosis of oral, cervical and ovarian cancer. i 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, I E E E Engineering in Medicine and Biology Society. Conference Proceedings, s. 6361-6364, 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31/08/2010. https://doi.org/10.1109/IEMBS.2010.5627292

APA

Karemore, G., Mullick, J. B., Sujatha, R., Nielsen, M., & Santhosh, C. (2010). Classification of protein profiles using fuzzy clustering techniques: an application in early diagnosis of oral, cervical and ovarian cancer. I 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (s. 6361-6364). IEEE. I E E E Engineering in Medicine and Biology Society. Conference Proceedings https://doi.org/10.1109/IEMBS.2010.5627292

Vancouver

Karemore G, Mullick JB, Sujatha R, Nielsen M, Santhosh C. Classification of protein profiles using fuzzy clustering techniques: an application in early diagnosis of oral, cervical and ovarian cancer. I 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2010. s. 6361-6364. (I E E E Engineering in Medicine and Biology Society. Conference Proceedings). https://doi.org/10.1109/IEMBS.2010.5627292

Author

Karemore, Gopal ; Mullick, Jhinuk B. ; Sujatha, R. ; Nielsen, Mads ; Santhosh, C. / Classification of protein profiles using fuzzy clustering techniques : an application in early diagnosis of oral, cervical and ovarian cancer. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2010. s. 6361-6364 (I E E E Engineering in Medicine and Biology Society. Conference Proceedings).

Bibtex

@inproceedings{71693f00753a11df928f000ea68e967b,
title = "Classification of protein profiles using fuzzy clustering techniques: an application in early diagnosis of oral, cervical and ovarian cancer",
abstract = " Present  study  has  brought  out  a  comparison  of PCA  and  fuzzy  clustering  techniques  in  classifying  protein profiles  (chromatogram)  of  homogenates  of  different  tissue origins:  Ovarian,  Cervix,  Oral  cancers,  which  were  acquired using HPLC–LIF (High Performance Liquid Chromatography- Laser   Induced   Fluorescence)   method   developed   in   our laboratory. Study includes 11 chromatogram spectra each from oral,  cervical,  ovarian  cancers  as  well  as  healthy  volunteers. Generally  multivariate  analysis  like  PCA  demands  clear  data that   is   devoid   of   day-to-day   variation,   artifacts   due   to experimental   strategies,   inherent   uncertainty   in   pumping procedure which are very common activities during HPLC-LIF experiment.  Under  these  circumstances  we  demonstrate  how fuzzy clustering algorithm like Gath Geva followed by sammon mapping   outperform   PCA   mapping   in   classifying   various cancers from healthy spectra with classification rate up to 95 {\%} from  60{\%}.  Methods  are  validated  using  various  clustering indexes   and   shows   promising   improvement   in   developing optical pathology like HPLC-LIF for early detection of various cancers  in  all  uncertain  conditions  with  high  sensitivity  and specificity.",
keywords = "Former Faculty of Life Sciences",
author = "Gopal Karemore and Mullick, {Jhinuk B.} and R. Sujatha and Mads Nielsen and C. Santhosh",
note = "Paper id:: 1932; 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2010 ; Conference date: 31-08-2010 Through 04-09-2010",
year = "2010",
doi = "10.1109/IEMBS.2010.5627292",
language = "English",
isbn = "978-1-4244-4123-5",
series = "I E E E Engineering in Medicine and Biology Society. Conference Proceedings",
publisher = "IEEE",
pages = "6361--6364",
booktitle = "2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)",

}

RIS

TY - GEN

T1 - Classification of protein profiles using fuzzy clustering techniques

T2 - 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society

AU - Karemore, Gopal

AU - Mullick, Jhinuk B.

AU - Sujatha, R.

AU - Nielsen, Mads

AU - Santhosh, C.

N1 - Conference code: 32

PY - 2010

Y1 - 2010

N2 -  Present  study  has  brought  out  a  comparison  of PCA  and  fuzzy  clustering  techniques  in  classifying  protein profiles  (chromatogram)  of  homogenates  of  different  tissue origins:  Ovarian,  Cervix,  Oral  cancers,  which  were  acquired using HPLC–LIF (High Performance Liquid Chromatography- Laser   Induced   Fluorescence)   method   developed   in   our laboratory. Study includes 11 chromatogram spectra each from oral,  cervical,  ovarian  cancers  as  well  as  healthy  volunteers. Generally  multivariate  analysis  like  PCA  demands  clear  data that   is   devoid   of   day-to-day   variation,   artifacts   due   to experimental   strategies,   inherent   uncertainty   in   pumping procedure which are very common activities during HPLC-LIF experiment.  Under  these  circumstances  we  demonstrate  how fuzzy clustering algorithm like Gath Geva followed by sammon mapping   outperform   PCA   mapping   in   classifying   various cancers from healthy spectra with classification rate up to 95 % from  60%.  Methods  are  validated  using  various  clustering indexes   and   shows   promising   improvement   in   developing optical pathology like HPLC-LIF for early detection of various cancers  in  all  uncertain  conditions  with  high  sensitivity  and specificity.

AB -  Present  study  has  brought  out  a  comparison  of PCA  and  fuzzy  clustering  techniques  in  classifying  protein profiles  (chromatogram)  of  homogenates  of  different  tissue origins:  Ovarian,  Cervix,  Oral  cancers,  which  were  acquired using HPLC–LIF (High Performance Liquid Chromatography- Laser   Induced   Fluorescence)   method   developed   in   our laboratory. Study includes 11 chromatogram spectra each from oral,  cervical,  ovarian  cancers  as  well  as  healthy  volunteers. Generally  multivariate  analysis  like  PCA  demands  clear  data that   is   devoid   of   day-to-day   variation,   artifacts   due   to experimental   strategies,   inherent   uncertainty   in   pumping procedure which are very common activities during HPLC-LIF experiment.  Under  these  circumstances  we  demonstrate  how fuzzy clustering algorithm like Gath Geva followed by sammon mapping   outperform   PCA   mapping   in   classifying   various cancers from healthy spectra with classification rate up to 95 % from  60%.  Methods  are  validated  using  various  clustering indexes   and   shows   promising   improvement   in   developing optical pathology like HPLC-LIF for early detection of various cancers  in  all  uncertain  conditions  with  high  sensitivity  and specificity.

KW - Former Faculty of Life Sciences

U2 - 10.1109/IEMBS.2010.5627292

DO - 10.1109/IEMBS.2010.5627292

M3 - Article in proceedings

SN - 978-1-4244-4123-5

T3 - I E E E Engineering in Medicine and Biology Society. Conference Proceedings

SP - 6361

EP - 6364

BT - 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

PB - IEEE

Y2 - 31 August 2010 through 4 September 2010

ER -

ID: 172467733