Clinician preimplementation perspectives of a decision-support tool for the prediction of cardiac arrhythmia based on machine learning: near-live feasibility and qualitative study

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt


  • Fulltext

    Forlagets udgivne version, 804 KB, PDF-dokument

  • Stina Matthiesen
  • Søren Zöga Diederichsen
  • Mikkel Klitzing Hartmann Hansen
  • Christina Villumsen
  • Mats Christian Højbjerg Lassen
  • Peter Karl Jacobsen
  • Niels Risum
  • Bo Gregers Winkel
  • Berit T. Philbert
  • Svendsen, Jesper Hastrup
  • Andersen, Tariq Osman

Background: Artificial intelligence (AI), such as machine learning (ML), shows great promise for improving clinical decision-making in cardiac diseases by outperforming statistical-based models. However, few AI-based tools have been implemented in cardiology clinics because of the sociotechnical challenges during transitioning from algorithm development to real-world implementation. Objective: This study explored how an ML-based tool for predicting ventricular tachycardia and ventricular fibrillation (VT/VF) could support clinical decision-making in the remote monitoring of patients with an implantable cardioverter defibrillator (ICD). Methods: Seven experienced electrophysiologists participated in a near-live feasibility and qualitative study, which included walkthroughs of 5 blinded retrospective patient cases, use of the prediction tool, and questionnaires and interview questions. All sessions were video recorded, and sessions evaluating the prediction tool were transcribed verbatim. Data were analyzed through an inductive qualitative approach based on grounded theory. Results: The prediction tool was found to have potential for supporting decision-making in ICD remote monitoring by providing reassurance, increasing confidence, acting as a second opinion, reducing information search time, and enabling delegation of decisions to nurses and technicians. However, the prediction tool did not lead to changes in clinical action and was found less useful in cases where the quality of data was poor or when VT/VF predictions were found to be irrelevant for evaluating the patient. Conclusions: When transitioning from AI development to testing its feasibility for clinical implementation, we need to consider the following: Expectations must be aligned with the intended use of AI; trust in the prediction tool is likely to emerge from real-world use; and AI accuracy is relational and dependent on available information and local workflows. Addressing the sociotechnical gap between the development and implementation of clinical decision-support tools based on ML in cardiac care is essential for succeeding with adoption. It is suggested to include clinical end-users, clinical contexts, and workflows throughout the overall iterative approach to design, development, and implementation.

TidsskriftJMIR Human Factors
Udgave nummer4
Antal sider17
StatusUdgivet - 2021

Bibliografisk note

Funding Information:
We wish to thank the participating electrophysiologists at the Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. The research and technology developed (working title: SafeHeart) were supported by the European Data Pitch Innovation Program H2020–732506 and led by TOA.

Publisher Copyright:
© 2021 JMIR Human Factors. All rights reserved.

Antal downloads er baseret på statistik fra Google Scholar og

Ingen data tilgængelig

ID: 286992302