Combinatory Adjoints and Differentiation

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningfagfællebedømt


  • Fulltext

    Forlagets udgivne version, 250 KB, PDF-dokument

We develop a compositional approach for automatic and symbolic differentiation based on categorical constructions in functional analysis where derivatives are linear functions on abstract vectors rather than being limited to scalars, vectors, matrices or tensors represented as multi-dimensional arrays. We show that both symbolic and automatic differentiation can be performed using a differential calculus for generating linear functions representing Fréchet derivatives based on rules for primitive, constant, linear and bilinear functions as well as their sequential and parallel composition. Linear functions are represented in a combinatory domain-specific language. Finally, we provide a calculus for symbolically computing the adjoint of a derivative without using matrices, which are too inefficient to use on high-dimensional spaces. The resulting symbolic representation of a derivative retains the data-parallel operations from the input program. The combination of combinatory differentiation and computing formal adjoints turns out to be behaviorally equivalent to reverse-mode automatic differentiation. In particular, it provides opportunities for optimizations where matrices are too inefficient to represent linear functions.

TitelProceedings Ninth Workshop on Mathematically Structured Functional Programming (MSFP 2022).
StatusUdgivet - 2022
Begivenhed9th Workshop on Mathematically Structured Functional Programming, MSFP 2022 - Munich, Tyskland
Varighed: 2 apr. 2022 → …


Konference9th Workshop on Mathematically Structured Functional Programming, MSFP 2022
Periode02/04/2022 → …
NavnElectronic Proceedings in Theoretical Computer Science, EPTCS

Bibliografisk note

Publisher Copyright:
© 2022 Elsman, Henglein, Kaarsgaard, Mathiesen, Schenck.

Antal downloads er baseret på statistik fra Google Scholar og

Ingen data tilgængelig

ID: 342682513