Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning. / van Engelen, Arna; van Dijk, Anouk C; Truijman, Martine T.B.; van't Klooster, Ronald; van Opbroek, Annegreet; van der Lugt, Aad; Niessen, Wiro J.; Kooi, M. Eline; de Bruijne, Marleen.

I: IEEE Transactions on Medical Imaging, Bind 34, Nr. 6, 2015, s. 1294-1305.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

van Engelen, A, van Dijk, AC, Truijman, MTB, van't Klooster, R, van Opbroek, A, van der Lugt, A, Niessen, WJ, Kooi, ME & de Bruijne, M 2015, 'Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning', IEEE Transactions on Medical Imaging, bind 34, nr. 6, s. 1294-1305. https://doi.org/10.1109/TMI.2014.2384733

APA

van Engelen, A., van Dijk, A. C., Truijman, M. T. B., van't Klooster, R., van Opbroek, A., van der Lugt, A., Niessen, W. J., Kooi, M. E., & de Bruijne, M. (2015). Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning. IEEE Transactions on Medical Imaging, 34(6), 1294-1305. https://doi.org/10.1109/TMI.2014.2384733

Vancouver

van Engelen A, van Dijk AC, Truijman MTB, van't Klooster R, van Opbroek A, van der Lugt A o.a. Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning. IEEE Transactions on Medical Imaging. 2015;34(6):1294-1305. https://doi.org/10.1109/TMI.2014.2384733

Author

van Engelen, Arna ; van Dijk, Anouk C ; Truijman, Martine T.B. ; van't Klooster, Ronald ; van Opbroek, Annegreet ; van der Lugt, Aad ; Niessen, Wiro J. ; Kooi, M. Eline ; de Bruijne, Marleen. / Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning. I: IEEE Transactions on Medical Imaging. 2015 ; Bind 34, Nr. 6. s. 1294-1305.

Bibtex

@article{e264d2e58b1f4c0b9faee35b5837a2d5,
title = "Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning",
abstract = "Automated segmentation of plaque components in carotid artery MRI is important to enable large studies on plaque vulnerability, and for incorporating plaque composition as an imaging biomarker in clinical practice. Especially supervised classification techniques, which learn from labeled examples, have shown good performance. However, a disadvantage of supervised methods is their reduced performance on data different from the training data, for example on images acquired with different scanners. Reducing the amount of manual annotations required for each new dataset will facilitate widespread implementation of supervised methods. In this paper we segment carotid plaque components of clinical interest (fibrous tissue, lipid tissue, calcification and intraplaque hemorrhage) in a multicenter MRI study. We perform voxelwise tissue classification by traditional same-center training, and compare results with two approaches that use little or no annotated same-center data. These approaches additionally use an annotated set of differentcenter data. We evaluate 1) a non-linear feature normalization approach, and 2) two transfer-learning algorithms that use same and different-center data with different weights. Results showed that the best results were obtained for a combination of feature normalization and transfer learning. While for the other approaches significant differences in voxelwise or mean volume errors were found compared with the reference samecenter training, the proposed approach did not yield significant differences from that reference. We conclude that both extensive feature normalization and transfer learning can be valuable for the development of supervised methods that perform well on different types of datasets.",
author = "{van Engelen}, Arna and {van Dijk}, {Anouk C} and Truijman, {Martine T.B.} and {van't Klooster}, Ronald and {van Opbroek}, Annegreet and {van der Lugt}, Aad and Niessen, {Wiro J.} and Kooi, {M. Eline} and {de Bruijne}, Marleen",
year = "2015",
doi = "10.1109/TMI.2014.2384733",
language = "English",
volume = "34",
pages = "1294--1305",
journal = "I E E E Transactions on Medical Imaging",
issn = "0278-0062",
publisher = "Institute of Electrical and Electronics Engineers",
number = "6",

}

RIS

TY - JOUR

T1 - Multi-center MRI carotid plaque component segmentation using feature normalization and transfer learning

AU - van Engelen, Arna

AU - van Dijk, Anouk C

AU - Truijman, Martine T.B.

AU - van't Klooster, Ronald

AU - van Opbroek, Annegreet

AU - van der Lugt, Aad

AU - Niessen, Wiro J.

AU - Kooi, M. Eline

AU - de Bruijne, Marleen

PY - 2015

Y1 - 2015

N2 - Automated segmentation of plaque components in carotid artery MRI is important to enable large studies on plaque vulnerability, and for incorporating plaque composition as an imaging biomarker in clinical practice. Especially supervised classification techniques, which learn from labeled examples, have shown good performance. However, a disadvantage of supervised methods is their reduced performance on data different from the training data, for example on images acquired with different scanners. Reducing the amount of manual annotations required for each new dataset will facilitate widespread implementation of supervised methods. In this paper we segment carotid plaque components of clinical interest (fibrous tissue, lipid tissue, calcification and intraplaque hemorrhage) in a multicenter MRI study. We perform voxelwise tissue classification by traditional same-center training, and compare results with two approaches that use little or no annotated same-center data. These approaches additionally use an annotated set of differentcenter data. We evaluate 1) a non-linear feature normalization approach, and 2) two transfer-learning algorithms that use same and different-center data with different weights. Results showed that the best results were obtained for a combination of feature normalization and transfer learning. While for the other approaches significant differences in voxelwise or mean volume errors were found compared with the reference samecenter training, the proposed approach did not yield significant differences from that reference. We conclude that both extensive feature normalization and transfer learning can be valuable for the development of supervised methods that perform well on different types of datasets.

AB - Automated segmentation of plaque components in carotid artery MRI is important to enable large studies on plaque vulnerability, and for incorporating plaque composition as an imaging biomarker in clinical practice. Especially supervised classification techniques, which learn from labeled examples, have shown good performance. However, a disadvantage of supervised methods is their reduced performance on data different from the training data, for example on images acquired with different scanners. Reducing the amount of manual annotations required for each new dataset will facilitate widespread implementation of supervised methods. In this paper we segment carotid plaque components of clinical interest (fibrous tissue, lipid tissue, calcification and intraplaque hemorrhage) in a multicenter MRI study. We perform voxelwise tissue classification by traditional same-center training, and compare results with two approaches that use little or no annotated same-center data. These approaches additionally use an annotated set of differentcenter data. We evaluate 1) a non-linear feature normalization approach, and 2) two transfer-learning algorithms that use same and different-center data with different weights. Results showed that the best results were obtained for a combination of feature normalization and transfer learning. While for the other approaches significant differences in voxelwise or mean volume errors were found compared with the reference samecenter training, the proposed approach did not yield significant differences from that reference. We conclude that both extensive feature normalization and transfer learning can be valuable for the development of supervised methods that perform well on different types of datasets.

U2 - 10.1109/TMI.2014.2384733

DO - 10.1109/TMI.2014.2384733

M3 - Journal article

C2 - 25532205

VL - 34

SP - 1294

EP - 1305

JO - I E E E Transactions on Medical Imaging

JF - I E E E Transactions on Medical Imaging

SN - 0278-0062

IS - 6

ER -

ID: 162897571