Weighing the Pros and Cons: Process Discovery with Negative Examples

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningfagfællebedømt

Contemporary process discovery methods take as inputs only positive examples of process executions, and so they are one-class classification algorithms. However, we have found negative examples to also be available in industry, hence we propose to treat process discovery as a binary classification problem. This approach opens the door to many well-established methods and metrics from machine learning, in particular to improve the distinction between what should and should not be allowed by the output model. Concretely, we (1) present a formalisation of process discovery as a binary classification problem; (2) provide cases with negative examples from industry, including real-life logs; (3) propose the Rejection Miner binary classification procedure, applicable to any process notation that has a suitable syntactic composition operator; and (4) apply this miner to the real world logs obtained from our industry partner, showing increased output model quality in terms of accuracy and model size.

TitelBusiness Process Management - 19th International Conference, BPM 2021, Proceedings
RedaktørerArtem Polyvyanyy, Moe Thandar Wynn, Amy Van Looy, Manfred Reichert
ISBN (Trykt)9783030854683
StatusUdgivet - 2021
Begivenhed19th International Conference on Business Process Management, BPM 2021 - Rome, Italien
Varighed: 6 sep. 202110 sep. 2021


Konference19th International Conference on Business Process Management, BPM 2021
NavnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vol/bind12875 LNCS

Bibliografisk note

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

ID: 282680828