Tijs Slaats

Tijs Slaats

Associate Professor


  1. Published

    Poster: Unanimous-Majority - Pushing Blockchain Sharding Throughput to its Limit

    xnq518, xnq518, Slaats, Tijs & Duedder, Boris, 7 Nov 2022, CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery (ACM), p. 3495–3497

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

  2. Published
  3. Published

    Distributed and Adversarial Resistant Workflow Execution on the Algorand Blockchain

    Xu, Y., Slaats, Tijs, Duedder, Boris, Debois, S. & Wu, Haiqin, 2022, arxiv.org, 15 p.

    Research output: Working paperResearch

  4. Published

    DisCoveR: accurate and efficient discovery of declarative process models

    Back, C.O., Slaats, Tijs, Hildebrandt, Thomas Troels & Marquard, M., 2022, In: International Journal on Software Tools for Technology Transfer. 24, 4, p. 563–587

    Research output: Contribution to journalJournal articleResearchpeer-review

  5. Published

    Deconstructing Gender in Asylum Categories: An Archival Perspective on a Practice with Limited Access

    Gammeltoft-Hansen, Thomas, Kaltenhäuser, Kristin, Møller, Naja Holten & Slaats, Tijs, 2022, In: Proceedings the European Conference on Computer-Supported Cooperative Work. 20, 19 p.

    Research output: Contribution to journalJournal articleResearchpeer-review

  6. Published

    Decision Modelling in Timed Dynamic Condition Response Graphs with Data

    Hildebrandt, Thomas Troels, Normann, H., Marquard, M., Debois, S. & Slaats, Tijs, 2022, Business Process Management Workshops - BPM 2021 International Workshops, Revised Selected Papers: BPM 2021 International Workshops Rome, Italy, September 6–10, 2021 Revised Selected Papers. Marrella, A. & Weber, B. (eds.). Springer, p. 362-374 13 p. (Lecture Notes in Business Information Processing, Vol. 436 LNBIP).

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

ID: 161900503