Auditing Risk Prediction of Long-Term Unemployment
Research output: Contribution to journal › Journal article › Research › peer-review
Standard
Auditing Risk Prediction of Long-Term Unemployment. / Seidelin, Cathrine; Moreau, Therese; Shklovski, Irina; Holten Møller, Naja.
In: Proceedings of the ACM on Human-Computer Interaction, Vol. 6, No. GROUP, 8, 2022, p. 112.Research output: Contribution to journal › Journal article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Auditing Risk Prediction of Long-Term Unemployment
AU - Seidelin, Cathrine
AU - Moreau, Therese
AU - Shklovski, Irina
AU - Holten Møller, Naja
N1 - Funding Information: We thank our collaborators from the Danish Agency for Labour Market and Recruitment, especially Carsten Søren Nielsen, and Zetland’s Frederik Kulager besides Peter Maarbjerg Dønvang – as well as colleagues Asbjørn Ammitzbøll Flügge, Trine Rask Nielsen, and Thomas T. Hildebrandt for providing feedback. This research has been supported by the Innovation Fund Denmark (EcoKnow: award number 7050-00034A) and the Independent Research Fund Denmark (PACTA: award number 8091-00025b). Funding Information: This work is supported by the Innovation Fund Denmark, under grant 7050-00034A and the Independent Research Fund Denmark, under grant 8091-00025b. Author’s addresses: C. Seidelin, I., Shklovski and N. Holten Møller, Department of Computer Science, University of Copenhagen, Sigurdsgade 41, 2200 Copenhagen, Denmark; T. Moreau, Zetland, Njalsgade 19D, 1st floor, 2300 Copenhagen, Denmark. Publisher Copyright: © 2022 Owner/Author.
PY - 2022
Y1 - 2022
N2 - As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin"to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.
AB - As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin"to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.
KW - accountability
KW - algorithm
KW - audit
KW - job placement
KW - public services
U2 - 10.1145/3492827
DO - 10.1145/3492827
M3 - Journal article
AN - SCOPUS:85123316786
VL - 6
SP - 112
JO - Proceedings of the ACM on Human-Computer Interaction
JF - Proceedings of the ACM on Human-Computer Interaction
SN - 2573-0142
IS - GROUP
M1 - 8
ER -
ID: 299049330