On division versus saturation in pseudo-boolean solving

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

The conflict-driven clause learning (CDCL) paradigm has revolutionized SAT solving over the last two decades. Extending this approach to pseudo-Boolean (PB) solvers doing 0-1 linear programming holds the promise of further exponential improvements in theory, but intriguingly such gains have not materialized in practice. Also intriguingly, most PB extensions of CDCL use not the division rule in cutting planes as defined in [Cook et al.,'87] but instead the so-called saturation rule. To the best of our knowledge, there has been no study comparing the strengths of division and saturation in the context of conflict-driven PB learning, when all linear combinations of inequalities are required to cancel variables. We show that PB solvers with division instead of saturation can be exponentially stronger. In the other direction, we prove that simulating a single saturation step can require an exponential number of divisions. We also perform some experiments to see whether these phenomena can be observed in actual solvers. Our conclusion is that a careful combination of division and saturation seems to be crucial to harness more of the power of cutting planes.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Publication date2019
Pages1711-1718
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
LandChina
ByMacao
Periode10/08/201916/08/2019
SponsorBaidu, et al., Huawei, International Joint Conferences on Artifical Intelligence (IJCAI), Sony Group Corporation, Xiao-i

ID: 251867307