Viktoria Schuster
Postdoc
Machine Learning
Universitetsparken 1
2100 København Ø
1 - 4 out of 4Page size: 10
- 2023
- Published
N-of-one differential gene expression without control samples using a deep generative model
Prada Luengo, Inigo, Schuster, Viktoria, Liang, Yuhu, Terkelsen, Thilde Bagger, Sora, Valentina & Krogh, Anders, 2023, In: Genome Biology. 24, 1, 17 p., 263.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data
Schuster, Viktoria & Krogh, Anders, 2023, In: Bioinformatics. 39, 9, 14 p., btad497.Research output: Contribution to journal › Journal article › Research › peer-review
- 2021
- Published
A manifold learning perspective on representation learning: Learning decoder and representations without an encoder
Schuster, Viktoria & Krogh, Anders, Nov 2021, In: Entropy. 23, 11, 14 p., 1403.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
Montemurro, A., Schuster, Viktoria, Povlsen, H. R., Bentzen, A. K., Jurtz, V., Chronister, W. D., Crinklaw, A., Hadrup, S. R., Winther, Ole, Peters, B., Jessen, L. E. & Nielsen, M., 2021, In: Communications Biology . 4, 13 p., 1060.Research output: Contribution to journal › Journal article › Research › peer-review
ID: 250641482
Most downloads
-
48
downloads
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
Research output: Contribution to journal › Journal article › Research › peer-review
Published -
47
downloads
A manifold learning perspective on representation learning: Learning decoder and representations without an encoder
Research output: Contribution to journal › Journal article › Research › peer-review
Published -
31
downloads
N-of-one differential gene expression without control samples using a deep generative model
Research output: Contribution to journal › Journal article › Research › peer-review
Published