Image segmentation by shape particle filtering
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Statistical appearance models are valuable tools in medical image segmentation. Current methods elegantly incorporate global shape and appearance, but cannot cope with local appearance variations and rely on an assumption of Gaussian gray value distribution. Furthermore, initialization near the optimal solution is required. We propose a shape inference method that is based on pixel classification, so that local and non-linear intensity variations are dealt with naturally, while a global shape model ensures a consistent segmentation. Optimization by stochastic sampling removes the need for accurate initialization. The method is demonstrated on vertebra segmentation in spine radiographs. Segmentation errors are below 2 mm in 88 out of 91 cases, with an average error of 1.4 mm.
Original language | English |
---|---|
Title of host publication | Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on |
Volume | 3 |
Publisher | IEEE Signal Processing Society |
Publication date | 2004 |
Pages | 722- 725 |
ISBN (Print) | 0-7695-2128-2 |
ISBN (Electronic) | 1051-4651 |
DOIs | |
Publication status | Published - 2004 |
Externally published | Yes |
Event | International Conference on Pattern Recognition (ICPR) - Cambridge, United Kingdom Duration: 29 Nov 2010 → … Conference number: 17 |
Conference
Conference | International Conference on Pattern Recognition (ICPR) |
---|---|
Nummer | 17 |
Land | United Kingdom |
By | Cambridge |
Periode | 29/11/2010 → … |
ID: 5034973