Transfer learning improves supervised image segmentation across imaging protocols

Research output: Contribution to journalJournal articlepeer-review

Documents

The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two MRI brain-segmentation tasks with multi-site data: white matter, gray matter, and CSF segmentation; and white-matter- /MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

Original languageEnglish
JournalIEEE Transactions on Medical Imaging
Volume34
Issue number5
Pages (from-to)1018-1030
Number of pages13
ISSN0278-0062
DOIs
Publication statusPublished - 2015

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 127559526